Previous Page 2

Displaying 21 – 23 of 23

Showing per page

An interior point algorithm for convex quadratic programming with strict equilibrium constraints

Rachid Benouahboun, Abdelatif Mansouri (2010)

RAIRO - Operations Research

We describe an interior point algorithm for convex quadratic problem with a strict complementarity constraints. We show that under some assumptions the approach requires a total of O ( n L ) number of iterations, where L is the input size of the problem. The algorithm generates a sequence of problems, each of which is approximately solved by Newton's method.

An interior-point algorithm for semidefinite least-squares problems

Chafia Daili, Mohamed Achache (2022)

Applications of Mathematics

We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter β which defines the size of the neighborhood of the central-path and of the parameter θ which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined and converges...

Currently displaying 21 – 23 of 23

Previous Page 2