The search session has expired. Please query the service again.
This paper describes a procedure that uses particle swarm optimization (PSO) combined with the Lagrangian Relaxation (LR) framework to solve a power-generator scheduling problem known as the unit commitment problem (UCP). The UCP consists of determining the schedule and production amount of generating units within a power system subject to operating constraints. The LR framework is applied to relax coupling constraints of the optimization problem. Thus, the UCP is separated into independent optimization...
A previous paper by the same authors presented a general theory solving (finite horizon) feasibility and optimization problems for linear dynamic discrete-time systems with polyhedral constraints. We derived necessary and sufficient conditions for the existence of solutions without assuming any restrictive hypothesis. For the solvable cases we also provided the inequative feedback dynamic system, that generates by forward recursion all and nothing but the feasible (or optimal, according to the cases)...
The paper presents selected multicriteria (multiobjective) approaches to shortest path problems. A classification of multi-objective shortest path (MOSP) problems is given. Different models of MOSP problems are discussed in detail. Methods of solving the formulated optimization problems are presented. An analysis of the complexity of the presented methods and ways of adapting of classical algorithms for solving multiobjective shortest path problems are described. A comparison of the effectiveness...
In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially...
El propósito de este trabajo es dar una construcción explícita del test de máxima potencia para un constraste de hipótesis paramétrico en el que tanto la hipótesis nula como la hipótesis alternativa son simples, utilizando para ello técnicas del Análisis Funcional y de Programación Matemática.
Application tools for the crop allocation problem (CAP) are required for agricultural advisors to design more efficient farming systems. Despite the extensive treatment of this issue by agronomists in the past, few methods tackle the crop allocation problem considering both the spatial and the temporal aspects of the CAP. In this paper, we precisely propose an original formulation addressing the crop allocation planning problem while taking farmers’ management choices into account. These choices...
In applications of geometric programming, some coefficients and/or exponents may not be precisely known. Stochastic geometric programming can be used to deal with such situations. In this paper, we shall indicate which stochastic programming approaches and which structural and distributional assumptions do not destroy the favorable structure of geometric programs. The already recognized possibilities are extended for a tracking model and stochastic sensitivity analysis is presented in the context...
Currently displaying 1 –
18 of
18