Displaying 521 – 540 of 619

Showing per page

An interior point algorithm for convex quadratic programming with strict equilibrium constraints

Rachid Benouahboun, Abdelatif Mansouri (2005)

RAIRO - Operations Research - Recherche Opérationnelle

We describe an interior point algorithm for convex quadratic problem with a strict complementarity constraints. We show that under some assumptions the approach requires a total of O ( n L ) number of iterations, where L is the input size of the problem. The algorithm generates a sequence of problems, each of which is approximately solved by Newton’s method.

An interior point algorithm for convex quadratic programming with strict equilibrium constraints

Rachid Benouahboun, Abdelatif Mansouri (2010)

RAIRO - Operations Research

We describe an interior point algorithm for convex quadratic problem with a strict complementarity constraints. We show that under some assumptions the approach requires a total of O ( n L ) number of iterations, where L is the input size of the problem. The algorithm generates a sequence of problems, each of which is approximately solved by Newton's method.

An interior-point algorithm for semidefinite least-squares problems

Chafia Daili, Mohamed Achache (2022)

Applications of Mathematics

We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter β which defines the size of the neighborhood of the central-path and of the parameter θ which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined and converges...

An iterative algorithm for computing the cycle mean of a Toeplitz matrix in special form

Peter Szabó (2013)

Kybernetika

The paper presents an iterative algorithm for computing the maximum cycle mean (or eigenvalue) of n × n triangular Toeplitz matrix in max-plus algebra. The problem is solved by an iterative algorithm which is applied to special cycles. These cycles of triangular Toeplitz matrices are characterized by sub-partitions of n - 1 .

An optimal algorithm with Barzilai-Borwein steplength and superrelaxation for QPQC problem

Pospíšil, Lukáš (2013)

Programs and Algorithms of Numerical Mathematics

We propose a modification of MPGP algorithm for solving minimizing problem of strictly convex quadratic function subject to separable spherical constraints. This active set based algorithm explores the faces by the conjugate gradients and changes the active sets and active variables by the gradient projection with the Barzilai-Borwein steplength. We show how to use the algorithm for the solution of separable and equality constraints. The power of our modification is demonstrated on the solution...

An optimality system for finite average Markov decision chains under risk-aversion

Alfredo Alanís-Durán, Rolando Cavazos-Cadena (2012)

Kybernetika

This work concerns controlled Markov chains with finite state space and compact action sets. The decision maker is risk-averse with constant risk-sensitivity, and the performance of a control policy is measured by the long-run average cost criterion. Under standard continuity-compactness conditions, it is shown that the (possibly non-constant) optimal value function is characterized by a system of optimality equations which allows to obtain an optimal stationary policy. Also, it is shown that the...

An overview of semi-infinite programming theory and related topics through a generalization of the alternative theorems.

Miguel Angel Goberna, Marco A. López Cerdá, Jesús Pastor, Enriqueta Vercher (1984)

Trabajos de Estadística e Investigación Operativa

We propose new alternative theorems for convex infinite systems which constitute the generalization of the corresponding to Gale, Farkas, Gordan and Motzkin. By means of these powerful results we establish new approaches to the Theory of Infinite Linear Inequality Systems, Perfect Duality, Semi-infinite Games and Optimality Theory for non-differentiable convex Semi-Infinite Programming Problem.

An SMDP model for a multiclass multi-server queueing control problem considering conversion times

Zhicong Zhang, Na Li, Shuai Li, Xiaohui Yan, Jianwen Guo (2014)

RAIRO - Operations Research - Recherche Opérationnelle

We address a queueing control problem considering service times and conversion times following normal distributions. We formulate the multi-server queueing control problem by constructing a semi-Markov decision process (SMDP) model. The mechanism of state transitions is developed through mathematical derivation of the transition probabilities and transition times. We also study the property of the queueing control system and show that optimizing the objective function of the addressed queueing control...

An SQP method for mathematical programs with complementarity constraints with strong convergence properties

Matus Benko, Helmut Gfrerer (2016)

Kybernetika

We propose an SQP algorithm for mathematical programs with complementarity constraints which solves at each iteration a quadratic program with linear complementarity constraints. We demonstrate how strongly M-stationary solutions of this quadratic program can be obtained by an active set method without using enumeration techniques. We show that all limit points of the sequence of iterates generated by our SQP method are at least M-stationary.

An SQP trust region method for solving the discrete-time linear quadratic control problem

El-Sayed M.E. Mostafa (2012)

International Journal of Applied Mathematics and Computer Science

In this paper, a sequential quadratic programming method combined with a trust region globalization strategy is analyzed and studied for solving a certain nonlinear constrained optimization problem with matrix variables. The optimization problem is derived from the infinite-horizon linear quadratic control problem for discrete-time systems when a complete set of state variables is not available. Moreover, a parametrization approach is introduced that does not require starting a feasible solution...

An unbounded Berge's minimum theorem with applications to discounted Markov decision processes

Raúl Montes-de-Oca, Enrique Lemus-Rodríguez (2012)

Kybernetika

This paper deals with a certain class of unbounded optimization problems. The optimization problems taken into account depend on a parameter. Firstly, there are established conditions which permit to guarantee the continuity with respect to the parameter of the minimum of the optimization problems under consideration, and the upper semicontinuity of the multifunction which applies each parameter into its set of minimizers. Besides, with the additional condition of uniqueness of the minimizer, its...

Currently displaying 521 – 540 of 619