Optimal Distribution Centers Involving Supply Capacity, Demands and Budget Restriction
Electroporation consists in increasing the permeability of a tissue by applying high voltage pulses. In this paper we discuss the question of optimal placement and optimal loading of electrodes such that electroporation holds only in a given open set of the domain. The electroporated set of the domain is where the norm of the electric field is above a given threshold value. We use a standard gradient algorithm to optimize the loading of the electrodes...
We consider a system of three queues and two types of packets. Each packet arriving at this system finds in front of it a controller who either sends it in the first queue or rejects it according to a QoS criterion. When the packet finishes its service in the first queue, it is probabilistically routed to one of two other parallel queues. The objective is to minimize a QoS discounted cost over an infinite horizon. The cost function is composed of a waiting cost per packet in each queue and a rejection...
We consider a system of three queues and two types of packets. Each packet arriving at this system finds in front of it a controller who either sends it in the first queue or rejects it according to a QoS criterion. When the packet finishes its service in the first queue, it is probabilistically routed to one of two other parallel queues. The objective is to minimize a QoS discounted cost over an infinite horizon. The cost function is composed of a waiting cost per packet in each queue and a rejection...
We address the 3-Machine Assembly-Type Flowshop Scheduling Problem (3MAF). This problem is known to be NP-complete in the strong sense. We propose an exact branch and bound method based on a recursive enumeration of potential inputs and outputs of the machines. Using this algorithm, several large size instances have been solved to optimality.
The construction of reduced order models for dynamical systems using proper orthogonal decomposition (POD) is based on the information contained in so-called snapshots. These provide the spatial distribution of the dynamical system at discrete time instances. This work is devoted to optimizing the choice of these time instances in such a manner that the error between the POD-solution and the trajectory of the dynamical system is minimized. First and second order optimality systems are given. Numerical...
Some necessary and some sufficient conditions are established for the explicit construction and characterization of optimal solutions of multivariate transportation (coupling) problems. The proofs are based on ideas from duality theory and nonconvex optimization theory. Applications are given to multivariate optimal coupling problems w.r.t. minimal -type metrics, where fairly explicit and complete characterizations of optimal transportation plans (couplings) are obtained. The results are of interest...
This work concerns controlled Markov chains with finite state space and nonnegative rewards; it is assumed that the controller has a constant risk-sensitivity, and that the performance ofa control policy is measured by a risk-sensitive expected total-reward criterion. The existence of optimal stationary policies isstudied within this context, and the main resultestablishes the optimalityof a stationary policy achieving the supremum in the correspondingoptimality equation, whenever the associated...
We consider the problem of providing optimal uncertainty quantification (UQ) – and hence rigorous certification – for partially-observed functions. We present a UQ framework within which the observations may be small or large in number, and need not carry information about the probability distribution of the system in operation. The UQ objectives are posed as optimization problems, the solutions of which are optimal bounds on the quantities of interest; we consider two typical settings, namely parameter...