Global attractivity for a differential-difference population model.
The authors consider the nonlinear difference equation with . They give sufficient conditions for the unique positive equilibrium of (0.1) to be a global attractor of all positive solutions. The results here are somewhat easier to apply than those of other authors. An application to a model of blood cell production is given.
The self-consistent chemotaxis-fluid system is considered under no-flux boundary conditions for and the Dirichlet boundary condition for on a bounded smooth domain
We describe the global dynamics of a disease transmission model between two regions which are connected via bidirectional or unidirectional transportation, where infection occurs during the travel as well as within the regions. We define the regional reproduction numbers and the basic reproduction number by constructing a next generation matrix. If the two regions are connected via bidirectional transportation, the basic reproduction number characterizes the existence of equilibria as well as...
A model of chemotaxis is analyzed that prevents blow-up of solutions. The model consists of a system of nonlinear partial differential equations for the spatial population density of a species and the spatial concentration of a chemoattractant in n-dimensional space. We prove the existence of solutions, which exist globally, and are L∞-bounded on finite time intervals. The hypotheses require nonlocal conditions on the species-induced production of the chemoattractant.
In this paper we consider a model of chemorepulsion. We prove global existence and uniqueness of smooth classical solutions in space dimension n = 2. For n = 3,4 we prove the global existence of weak solutions. The convergence to steady states is shown in all cases.