The pharmacodynamics of antibiotic treatment.
The competition graph of a doubly partial order is known to be an interval graph. The CCE graph and the niche graph of a doubly partial order are also known to be interval graphs if the graphs do not contain a cycle of length four and three as an induced subgraph, respectively. Phylogeny graphs are variant of competition graphs. The phylogeny graph P(D) of a digraph D is the (simple undirected) graph defined by V (P(D)) := V (D) and E(P(D)) := {xy | N+D (x) ∩ N+D(y) ¹ ⊘ } ⋃ {xy | (x,y) ∈ A(D)},...
Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy...
A number of biological phenomena are interlaced with classical mechanics. In this review are illustrated two examples from tumor growth, namely the formation of primordial networks of vessels (vasculogenesis) and the avascular phase of solid tumors. In both cases the formalism of continuum mechanics, accompanied by accurate numerical simulations, are able to shed light on biological controversies. The converse is also true: non-standard mechanical problems suggest new challenging mathematical questions....
We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in and...
We show how results by Diekmann et al. (2007) on the qualitative behaviour of solutions of delay equations apply directly to a resource-consumer model with age-structured consumer population.
In [2] we proved two kinds of mechanisms of preventing the blow up in a quasilinear non-uniformly parabolic Keller-Segel systems. One of them was a priori boundedness from below of the Lyapunov functional. In fact, we were able to present a condition under which the Lyapunov functional is bounded from below and a solution exists globally. In the present paper we prove that whenever the Lyapunov functional is bounded from below the solution exists globally.
A one-dimensional lattice of SIR (susceptible/infected/removed) epidemic centres is considered numerically and analytically. The limiting solutions describing the behaviour of the standard SIR model with a small number of initially infected individuals are derived, and expressions found for the duration of an outbreak. We study a model for a weakly mixed population distributed between the interacting centres. The centres are modelled as SIR nodes with interaction between sites determined by a diffusion-type...