Positive periodic solutions of functional differential equations and population models.
An existence theorem is proved for the scalar convolution type integral equation .
We consider the number of trophic levels in a food chain given by the equilibrium state for a simple mathematical model with ordinary differential equations which govern the temporal variation of the energy reserve in each trophic level. When a new trophic level invades over the top of the chain, the chain could lengthen by one trophic level. We can derive the condition that such lengthening could occur, and prove that the possibly longest chain is globally stable. In some specific cases,...
Early studies of the novel swine-origin 2009 influenza A (H1N1) epidemic indicate clinical attack rates in children much higher than in adults. Non-medical interventions such as school closings are constrained by their large socio-economic costs. Here we develop a mathematical model to ascertain the roles of pre-symptomatic influenza transmission as well as symptoms surveillance of children to assess the utility of school closures. Our model analysis...
Motivated by the development of efficient Monte Carlo methods for PDE models in molecular dynamics, we establish a new probabilistic interpretation of a family of divergence form operators with discontinuous coefficients at the interface of two open subsets of . This family of operators includes the case of the linearized Poisson-Boltzmann equation used to compute the electrostatic free energy of a molecule. More precisely, we explicitly construct a Markov process whose infinitesimal generator...