Hopf bifurcation for a model of HIV infection of T cells with virus released delay.
In this paper, the main purpose is to reveal what kind of qualitative dynamical changes a continuous age-structured model may undergo as continuous reproduction is replaced with an annual birth pulse. Using the discrete dynamical system determined by the stroboscopic map we obtain an exact periodic solution of system with density-dependent fertility and obtain the threshold conditions for its stability. We also present formal proofs of the supercritical flip bifurcation at the bifurcation as well...
In this paper, the main purpose is to reveal what kind of qualitative dynamical changes a continuous age-structured model may undergo as continuous reproduction is replaced with an annual birth pulse. Using the discrete dynamical system determined by the stroboscopic map we obtain an exact periodic solution of system with density-dependent fertility and obtain the threshold conditions for its stability. We also present formal proofs of the supercritical flip bifurcation at the bifurcation as...
We analyse the influence of diffusion and space distribution of cells in a simple model of interactions between an activated immune system and malignant gliomas, among which the most aggressive one is GBM Glioblastoma Multiforme. It turns out that diffusion cannot affect stability of spatially homogeneous steady states. This suggests that there are two possible outcomes-the solution is either attracted by the positive steady state or by the semitrivial one. The semitrivial steady state describes...
Epidemiologic data suggest that schools and daycare facilities likely play a major role in the dissemination of influenza. Pathogen transmission within such small, inhomogenously mixed populations is difficult to model using traditional approaches. We developed simulation based mathematical tool to investigate the effects of social contact networks on pathogen dissemination in a setting analogous to a daycare center or grade school. Here we show...
Článek se zabývá některými aplikacemi matematiky v ekologii. V historickém kontextu ukazuje, že jednak teoretické základy populační a evoluční ekologie využívají matematické metodologie založené na diferenciálních či diferenčních rovnicích, jednak ekologické problémy motivují vznik nových matematických disciplín, jako je např. evoluční teorie her.