Displaying 21 – 40 of 157

Showing per page

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A Mathematical Model of Cancer Stem Cell Lineage Population Dynamics with Mutation Accumulation and Telomere Length Hierarchies

G. Kapitanov (2012)

Mathematical Modelling of Natural Phenomena

There is evidence that cancer develops when cells acquire a sequence of mutations that alter normal cell characteristics. This sequence determines a hierarchy among the cells, based on how many more mutations they need to accumulate in order to become cancerous. When cells divide, they exhibit telomere loss and differentiate, which defines another cell hierarchy, on top of which is the stem cell. We propose a mutation-generation model, which combines...

A method for treating a class of non­linear diffusion problems

Stavros Busenberg, Mimmo Iannelli (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si presenta un metodo di soluzione di una classe di problemi di diffusione nonlineare che hanno origine dalla teoria delle popolazioni con struttura di età.

A Minimal Model of Pursuit-Evasion in a Predator-Prey System

Y. Tyutyunov, L. Titova, R. Arditi (2010)

Mathematical Modelling of Natural Phenomena

A conceptual minimal model demonstrating spatially heterogeneous wave regimes interpreted as pursuit-evasion in predator-prey system is constructed and investigated. The model is based on the earlier proposed hypothesis that taxis accelerations of prey and predators are proportional to the density gradient of another population playing a role of taxis stimulus. Considering acceleration rather than immediate velocity allows obtaining realistic solutions even while ignoring variations of total...

A model for gene activation.

Oppenheimer, Seth F., Fan, Ruping, Pruett, Stephan (2009)

Electronic Journal of Differential Equations (EJDE) [electronic only]

A Model of Large-Scale Evolution of Complex Food Webs

C. Guill (2010)

Mathematical Modelling of Natural Phenomena

A simple model of biological evolution of community food webs is introduced. This model is based on the niche model, which is known to generate model food webs that are very similar to empirical food webs. The networks evolve by speciation and extinction. Co-extinctions due to the loss of all prey species are found to play a major role in determining the longterm shape of the food webs. The central aim is to design the model such that the characteristic...

A Modeling Framework For Immune-related Diseases

F. Castiglione, S. Motta, F. Pappalardo, M. Pennisi (2012)

Mathematical Modelling of Natural Phenomena

About twenty five years ago the first discrete mathematical model of the immune system was proposed. It was very simple and stylized. Later, many other computational models have been proposed each one adding a certain level of sophistication and detail to the description of the system. One of these, the Celada-Seiden model published back in 1992, was already mature at its birth, setting apart from the topic-specific nature of the other models. This...

A new application of the homotopy analysis method in solving the fractional Volterra's population system

Mehdi Ghasemi, Mojtaba Fardi, Reza Khoshsiar Ghaziani (2014)

Applications of Mathematics

This paper considers a Volterra's population system of fractional order and describes a bi-parametric homotopy analysis method for solving this system. The homotopy method offers a possibility to increase the convergence region of the series solution. Two examples are presented to illustrate the convergence and accuracy of the method to the solution. Further, we define the averaged residual error to show that the obtained results have reasonable accuracy.

Currently displaying 21 – 40 of 157