Previous Page 2

Displaying 21 – 39 of 39

Showing per page

Global dynamics of a delay differential system of a two-patch SIS-model with transport-related infections

Yukihiko Nakata, Gergely Röst (2015)

Mathematica Bohemica

We describe the global dynamics of a disease transmission model between two regions which are connected via bidirectional or unidirectional transportation, where infection occurs during the travel as well as within the regions. We define the regional reproduction numbers and the basic reproduction number by constructing a next generation matrix. If the two regions are connected via bidirectional transportation, the basic reproduction number R 0 characterizes the existence of equilibria as well as...

Global Existence and Boundedness of Solutions to a Model of Chemotaxis

J. Dyson, R. Villella-Bressan, G. F. Webb (2008)

Mathematical Modelling of Natural Phenomena

A model of chemotaxis is analyzed that prevents blow-up of solutions. The model consists of a system of nonlinear partial differential equations for the spatial population density of a species and the spatial concentration of a chemoattractant in n-dimensional space. We prove the existence of solutions, which exist globally, and are L∞-bounded on finite time intervals. The hypotheses require nonlocal conditions on the species-induced production of the chemoattractant.

Global exponential stability of almost periodic solutions for a delayed single population model with hereditary effect

Qiyuan Zhou, Jianying Shao (2015)

Annales Polonici Mathematici

This paper is concerned with a delayed single population model with hereditary effect. Under appropriate conditions, we employ a novel argument to establish a criterion of the global exponential stability of positive almost periodic solutions of the model. Moreover, an example and its numerical simulation are given to illustrate the main result.

Global exponential stability of positive periodic solutions for an epidemic model with saturated treatment

Bingwen Liu (2016)

Annales Polonici Mathematici

This paper is concerned with an SIR model with periodic incidence rate and saturated treatment function. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive periodic solutions for this model. The result obtained improves and supplements existing ones. We also use numerical simulations to illustrate our theoretical results.

Global stability analysis and control of leptospirosis

Kazeem Oare Okosun, M. Mukamuri, Daniel Oluwole Makinde (2016)

Open Mathematics

The aim of this paper is to investigate the effectiveness and cost-effectiveness of leptospirosis control measures, preventive vaccination and treatment of infective humans that may curtail the disease transmission. For this, a mathematical model for the transmission dynamics of the disease that includes preventive, vaccination, treatment of infective vectors and humans control measures are considered. Firstly, the constant control parameters’ case is analyzed, also calculate the basic reproduction...

Global stability of steady solutions for a model in virus dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Global Stability of Steady Solutions for a Model in Virus Dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Growth of heterotrophe and autotrophe populations in an isolated terrestrial environment

Piotr Paweł Szopa, Monika Joanna Piotrowska (2011)

Applicationes Mathematicae

We consider the model, proposed by Dawidowicz and Zalasiński, describing the interactions between the heterotrophic and autotrophic organisms coexisting in a terrestrial environment with available oxygen. We modify this model by assuming intraspecific competition between heterotrophic organisms. Moreover, we introduce a diffusion of both types of organisms and oxygen. The basic properties of the extended model are examined and illustrated by numerical simulations.

Currently displaying 21 – 39 of 39

Previous Page 2