Displaying 441 – 460 of 791

Showing per page

Models of interactions between heterotrophic and autotrophic organisms

Urszula Foryś, Zuzanna Szymańska (2009)

Applicationes Mathematicae

We present two simple models describing relations between heterotrophic and autotrophic organisms in the land and water environments. The models are based on the Dawidowicz & Zalasiński models but we assume the boundedness of the oxygen resources. We perform a basic mathematical analysis of the models. The results of the analysis are complemented by numerical illustrations.

Monte Carlo simulation and analytic approximation of epidemic processes on large networks

Noémi Nagy, Péter Simon (2013)

Open Mathematics

Low dimensional ODE approximations that capture the main characteristics of SIS-type epidemic propagation along a cycle graph are derived. Three different methods are shown that can accurately predict the expected number of infected nodes in the graph. The first method is based on the derivation of a master equation for the number of infected nodes. This uses the average number of SI edges for a given number of the infected nodes. The second approach is based on the observation that the epidemic...

Multilevel Modeling of the Forest Resource Dynamics

I. N. Vladimirov, A. K. Chudnenko (2009)

Mathematical Modelling of Natural Phenomena

We examine the theoretical and applications-specific issues relating to modeling the temporal and spatial dynamics of forest ecosystems, based on the principles of investigating dynamical models. When developing the predictive dynamical models of forest resources, there is a possibility of achieving uniqueness of the solutions to equations by taking into account the initial and boundary conditions of the solution, and the conditions of the geographical environment. We present the results of a computer...

Multiple existence and stability of steady-states for a prey-predator system with cross-diffusion

Kousuke Kuto, Yoshio Yamada (2004)

Banach Center Publications

This article discusses a prey-predator system with cross-diffusion. We obtain multiple positive steady-state solutions of this system. More precisely, we prove that the set of positive steady-states possibly contains an S or ⊃-shaped branch with respect to a bifurcation parameter in the large cross-diffusion case. Next we give some criteria on the stability of these positive steady-states. Furthermore, we find the Hopf bifurcation point on the steady-state solution branch in a certain case. Our...

New results on global exponential stability of almost periodic solutions for a delayed Nicholson blowflies model

Bingwen Liu (2015)

Annales Polonici Mathematici

This paper is concerned with a class of Nicholson's blowflies models with multiple time-varying delays, which is defined on the nonnegative function space. Under appropriate conditions, we establish some criteria to ensure that all solutions of this model converge globally exponentially to a positive almost periodic solution. Moreover, we give an example with numerical simulations to illustrate our main results.

Non local reaction-diffusion equations modelling predator-prey coevolution.

Angel Calsina, Carles Perelló, Joan Saldaña (1994)

Publicacions Matemàtiques

In this paper we examine a predator-prey system with a characteristic of the predator subject to mutation. The ultimate equilibrium of the system is found by Maynard-Smith et al. by the so-called ESS (Evolutionary Stable Strategy). Using a system of reaction-diffusion equations with non local terms, we conclude that ESS result for the diffusion coefficient tending to zero, without resorting to any optimization criterion.

Nonlinear evolution equations with exponential nonlinearities: conditional symmetries and exact solutions

Roman Cherniha, Oleksii Pliukhin (2011)

Banach Center Publications

New Q-conditional symmetries for a class of reaction-diffusion-convection equations with exponential diffusivities are derived. It is shown that the known results for reaction-diffusion equations with exponential diffusivities follow as particular cases from those obtained here but not vice versa. The symmetries obtained are applied to construct exact solutions of the relevant nonlinear equations. An application of exact solutions to solving a boundary-value problem with constant Dirichlet conditions...

Currently displaying 441 – 460 of 791