Displaying 261 – 280 of 569

Showing per page

A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching

Guisheng Zhai, Xuping Xu (2010)

International Journal of Applied Mathematics and Computer Science

We establish a unified approach to stability analysis for switched linear descriptor systems under arbitrary switching in both continuous-time and discrete-time domains. The approach is based on common quadratic Lyapunov functions incorporated with linear matrix inequalities (LMIs). We show that if there is a common quadratic Lyapunov function for the stability of all subsystems, then the switched system is stable under arbitrary switching. The analysis results are natural extensions of the existing...

A uniformly controllable and implicit scheme for the 1-D wave equation

Arnaud Münch (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper studies the exact controllability of a finite dimensional system obtained by discretizing in space and time the linear 1-D wave system with a boundary control at one extreme. It is known that usual schemes obtained with finite difference or finite element methods are not uniformly controllable with respect to the discretization parameters h and Δ t . We introduce an implicit finite difference scheme which differs from the usual centered one by additional terms of order h 2 and Δ t 2 . Using a discrete...

A uniformly controllable and implicit scheme for the 1-D wave equation

Arnaud Münch (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper studies the exact controllability of a finite dimensional system obtained by discretizing in space and time the linear 1-D wave system with a boundary control at one extreme. It is known that usual schemes obtained with finite difference or finite element methods are not uniformly controllable with respect to the discretization parameters h and Δt. We introduce an implicit finite difference scheme which differs from the usual centered one by additional terms of order h2 and Δt2. Using...

A variable structure observer for the control of robot manipulators

Abdelkader Abdessameud, Mohamed Khelfi (2006)

International Journal of Applied Mathematics and Computer Science

This paper deals with the application of a variable structure observer developed for a class of nonlinear systems to solve the trajectory tracking problem for rigid robot manipulators. The analyzed approach to observer design proposes a simple design methodology for systems having completely observable linear parts and bounded nonlinearities andor uncertainties. This observer is basically the conventional Luenberger observer with an additional switching term that is used to guarantee robustness...

A vehicle-track-soil dynamic interaction problem in sequential and parallel formulation

Janusz Kogut, Henryk Ciurej (2010)

International Journal of Applied Mathematics and Computer Science

Some problems regarding numerical modeling of predicted vibrations excited by railway traffic are discussed. Model formulation in the field of structural mechanics comprises a vehicle, a track (often in a tunnel) and soil. Time consuming computations are needed to update large matrices at every discrete step. At first, a sequential Matlab code is generated. Later on, the formulation is modified to use grid computing, thereby a significant reduction in computational time is expected.

A weak regularity theorem for real analytic optimal control problems.

Hector J. Sussmann (1986)

Revista Matemática Iberoamericana

We consider real analytic finite-dimensional control problems with a scalar input that enters linearly in the evolution equations. We prove that, whenever it is possible to steer a state x to another state y by means of a measurable control, then it is possible to steer x to y by means of a control that has an extra regularity property, namely, that of being analytic on an open dense subset of its interval of definition. Since open dense sets can have very small measure, this is a very weak property....

About the linear-quadratic regulator problem under a fractional brownian perturbation

M. L. Kleptsyna, Alain Le Breton, M. Viot (2003)

ESAIM: Probability and Statistics

In this paper we solve the basic fractional analogue of the classical linear-quadratic gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.

About the linear-quadratic regulator problem under a fractional Brownian perturbation

M. L. Kleptsyna, Alain Le Breton, M. Viot (2010)

ESAIM: Probability and Statistics

In this paper we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.

Currently displaying 261 – 280 of 569