Local Controllability around Closed Orbits
We give a necessary and sufficient condition for local controllability around closed orbits for general smooth control systems. We also prove that any such system on a compact manifold has a closed orbit.
We give a necessary and sufficient condition for local controllability around closed orbits for general smooth control systems. We also prove that any such system on a compact manifold has a closed orbit.
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
Many real world data and processes have a network structure and can usefully be represented as graphs. Network analysis focuses on the relations among the nodes exploring the properties of each network. We introduce a method for measuring the strength of the relationship between two nodes of a network and for their ranking. This method is applicable to all kinds of networks, including directed and weighted networks. The approach extracts dependency relations among the network's nodes from the structure...
Our aim is to discuss three approaches to the detection of defects in continuous production processes, which are based on local methods of processing image sequences. These approaches are motivated by and applicable to images of hot metals or other surfaces, which are uniform at a macroscopic level, when defects are not present. The first of them is based on the estimation of fractal dimensions of image cross-sections. The second and third approaches are compositions of known techniques, which are...
In this talk, I will present a recent result obtained in [6] with O. Glass, S. Guerrero and J.-P. Puel on the local exact controllability of the -d compressible Navier-Stokes equations. The goal of these notes is to give an informal presentation of this article and we refer the reader to it for extensive details.
In this paper we deal with the local exact controllability of the Navier-Stokes system with nonlinear Navier-slip boundary conditions and distributed controls supported in small sets. In a first step, we prove a Carleman inequality for the linearized Navier-Stokes system, which leads to null controllability of this system at any time T>0. Then, fixed point arguments lead to the deduction of a local result concerning the exact controllability to the trajectories of the Navier-Stokes system.
We are interested by the three-dimensional coupling between an incompressible fluid and a rigid body. The fluid is modeled by the Navier-Stokes equations, while the solid satisfies the Newton's laws. In the main result of the paper we prove that, with the help of a distributed control, we can drive the fluid and structure velocities to zero and the solid to a reference position provided that the initial velocities are small enough and the initial position of the structure is close to the reference...
In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given , the system can be driven at rest and the structure to its reference configuration at time . To show this result, we first consider a linearized system....
In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given T > 0, the system can be driven at rest and the structure to its reference configuration at time T. To show this result, we first consider a linearized system....
In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set is a hyperplane....
In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set...
The paper deals with a specific kind of discrete-time recurrent neural network designed with dynamic neuron models. Dynamics are reproduced within each single neuron, hence the network considered is a locally recurrent globally feedforward. A crucial problem with neural networks of the dynamic type is stability as well as stabilization in learning problems. The paper formulates local stability conditions for the analysed class of neural networks using Lyapunov's first method. Moreover, a stabilization...