Displaying 81 – 100 of 422

Showing per page

Singular fractional linear systems and electrical circuits

Tadeusz Kaczorek (2011)

International Journal of Applied Mathematics and Computer Science

A new class of singular fractional linear systems and electrical circuits is introduced. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil decomposition and the Laplace transformation, the solution to the state equation of singular fractional linear systems is derived. It is shown that every electrical circuit is a singular fractional system if it contains at least one mesh consisting of branches only with an ideal supercapacitor and voltage sources or at least...

Singular perturbations for systems of differential inclusions

Marc Quincampoix (1995)

Banach Center Publications

We study a system of two differential inclusions such that there is a singular perturbation in the second one. We state new convergence results of solutions under assumptions concerning contingent derivative of the perturbed inclusion. These results state that there exists at least one family of solutions which converges to some solution of the reduced system. We extend this result to perturbed systems with state constraints.

Sixty years of cybernetics: a comparison of approaches to solving the H 2 control problem

Vladimír Kučera (2008)

Kybernetika

The H2 control problem consists of stabilizing a control system while minimizing the H2 norm of its transfer function. Several solutions to this problem are available. For systems in state space form, an optimal regulator can be obtained by solving two algebraic Riccati equations. For systems described by transfer functions, either Wiener-Hopf optimization or projection results can be applied. The optimal regulator is then obtained using operations with proper stable rational matrices: inner-outer...

Sixty years of cybernetics: cybernetics still alive

Havel, Ivan M. (2008)

Kybernetika

This informal essay, written on the occasion of 60th anniversary of Wienerian cybernetics, presents a series of themes and ideas that has emerged during last several decades and which have direct or indirect relationships to the principal concepts of cybernetics. Moreover, they share with original cybernetics the same transdisciplinary character.

Sliding mode control in the presence of delay

Jean-Pierre Richard, Fréderic Gouaisbaut, Wilfrid Perruquetti (2001)

Kybernetika

This paper provides an overview of recent results for relay-delay systems. In a first section, simple examples illustrate the problems induced by delays in the synthesis of sliding mode controllers. Then, a brief overview of the existing results shows the present advances and limits in this domain. The last parts of the paper are devoted to new results: first, for systems with state delay, then for systems with input delay.

Sliding mode controller-observer design for multivariable linear systems with unmatched uncertainty

A. Jafari Koshkouei, Alan S. I. Zinober (2000)

Kybernetika

This paper presents sufficient conditions for the sliding mode control of a system with disturbance input. The behaviour of the sliding dynamics in the presence of unmatched uncertainty is also studied. When a certain sufficient condition on the gain feedback matrix of the discontinuous controller and the disturbance bound holds, then the disturbance does not affect the sliding system. The design of asymptotically stable sliding observers for linear multivariable systems is presented. A sliding...

Sliding mode differentiator via improved adaptive notch filter

Juan Wang, Hehong Zhang, Yuanlong Yu, Zhihong Dan, Gaoxi Xiao, Qiuming Gu, Chao Zhai (2022)

Kybernetika

To tackle the difficulty in tuning the parameters of sliding mode differentiator (SMD), an improved adaptive notch filter based real-time parameter tuning scheme (denoted as ANF-SMD) is presented. Specifically, the integral feedback of the system output errors is introduced in constructing the cost function for the adaptive notch filter so as to estimate the real-time amplitude and frequency of given inputs. Then, upon the deterministic formula between the parameters of the SMD and the input signals,...

Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems

Christopher Edwards, Halim Alwi, Chee Pin Tan (2012)

International Journal of Applied Mathematics and Computer Science

Sliding mode methods have been historically studied because of their strong robustness properties with regard to a certain class of uncertainty, achieved by employing nonlinear control/injection signals to force the system trajectories to attain in finite time a motion along a surface in the state-space. This paper will consider how these ideas can be exploited for fault detection (specifically fault signal estimation) and subsequently fault tolerant control. It will also describe applications of...

Sliding subspace design based on linear matrix inequalities

Alán Tapia, Raymundo Márquez, Miguel Bernal, Joaquín Cortez (2014)

Kybernetika

In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially...

Sliding-mode pinning control of complex networks

Oscar J. Suarez, Carlos J. Vega, Santiago Elvira-Ceja, Edgar N. Sanchez, David I. Rodriguez (2018)

Kybernetika

In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the...

Currently displaying 81 – 100 of 422