Contrôle de l'équation des ondes dans des ouverts comportant des coins
We consider the exact controllability and stabilization of Maxwell equation by using results on the propagation of singularities of the electromagnetic field. We will assume geometrical control condition and use techniques of the work of Bardos et al. on the wave equation. The problem of internal stabilization will be treated with more attention because the condition divE=0 is not preserved by the system of Maxwell with Ohm's law.
Interpretations of most existing controllability and observability notions for linear delay systems are given. Module theoretic characterizations are presented. This setting enables a clear and precise comparison of the various examined notions. A new notion of controllability is introduced, which is called pi-freeness.
In this paper we extend some basic results on the controllability and observability of linear discrete-time fractional-order systems. For both of these fundamental structural properties we establish some new concepts inherent to fractional-order systems and we develop new analytical methods for checking these properties. Numerical examples are presented to illustrate the theoretical results.
In the paper, we unify and extend some basic properties for linear control systems as they appear in the continuous and discrete cases. In particular, we examine controllability, reachability, and observability for time-invariant systems and establish a duality principle.