Minimum energy control of fractional descriptor positive discrete-time linear systems
A minimum energy control problem for fractional positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the problem is proposed and illustrated with a numerical example.
The minimum energy control problem for positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the problem is proposed and illustrated with a numerical example.
This paper is concerned with the finite and infinite horizon optimal control issue for a class of networked control systems with stochastic communication protocols. Due to the limitation of networked bandwidth, only the limited number of sensors and actuators are allowed to get access to network mediums according to stochastic access protocols. A discrete-time Markov chain with a known transition probability matrix is employed to describe the scheduling behaviors of the stochastic access protocols,...
An upper bound for the complex structured singular value related to a linear time-invariant system over all frequencies is given. It is in the form of the spectral radius of the -norm matrix of SISO input-output channels of the system when uncertainty blocks are SISO. In the case of MIMO uncertainty blocks the upper bound is the -norm of a special non-negative matrix derived from -norms of SISO channels of the system. The upper bound is fit into the inequality relation between the results of...
This paper studies recursive optimal filtering as well as robust fault and state estimation for linear stochastic systems with unknown disturbances. It proposes a new recursive optimal filter structure with transformation of the original system. This transformation is based on the singular value decomposition of the direct feedthrough matrix distribution of the fault which is assumed to be of arbitrary rank. The resulting filter is optimal in the sense of the unbiased minimum-variance criteria....
This paper presents two observability inequalities for the heat equation over . In the first one, the observation is from a subset of positive measure in , while in the second, the observation is from a subset of positive surface measure on . It also proves the Lebeau-Robbiano spectral inequality when is a bounded Lipschitz and locally star-shaped domain. Some applications for the above-mentioned observability inequalities are provided.