The search session has expired. Please query the service again.
Displaying 161 –
180 of
422
We consider a projection-based model reduction approach to computing the maximal impact, one agent or a group of agents has on the cooperative system. As a criterion for measuring the agent-team impact on multi-agent systems, we use the norm, and output synchronization is taken as the underlying cooperative control scheme. We investigate a projection-based model reduction approach that allows efficient norm calculation. The convergence of this approach depends on initial interpolation points,...
In this paper, stabilizing problems in control design are addressed for linear discrete-time systems, reflecting equality constraints tying together some state variables. Based on an enhanced representation of the bounded real lemma for discretetime systems, the existence of a state feedback control for such conditioned stabilization is proven, and an LMI-based design procedure is provided. The control law gain computation method used circumvents generally an ill-conditioned singular design task....
Symmetric piecewise linear bi-dimensional systems are very common in control engineering. They constitute a class of non-differentiable vector fields for which classical Hopf bifurcation theorems are not applicable. For such systems, sufficient and necessary conditions for bifurcation of a limit cycle from the periodic orbit at infinity are given.
It is shown that the asymptotic stability of positive 2D linear systems with delays is independent of the number and values of the delays and it depends only on the sum of the system matrices, and that the checking of the asymptotic stability of positive 2D linear systems with delays can be reduced to testing that of the corresponding positive 1D systems without delays. The effectiveness of the proposed approaches is demonstrated on numerical examples.
A new kind of linear model with partially variant coefficients is proposed and a series of iterative algorithms are introduced and verified. The new generalized linear model includes the ordinary linear regression model as a special case. The iterative algorithms efficiently overcome some difficulties in computation with multidimensional inputs and incessantly appending parameters. An important application is described at the end of this article, which shows that this new model is reasonable and...
This paper considers the minimization of the -induced norm of the closed loop in linear multirate systems when full state information is available for feedback. A state-space approach is taken and concepts of viability theory and controlled invariance are utilized. The essential idea is to construct a set such that the state may be confined to that set and that such a confinement guarantees that the output satisfies the desired output norm conditions. Once such a set is computed, it is shown that...
Currently displaying 161 –
180 of
422