Contrôlabilité des systèmes bilinéaires dans le plan
Local constrained controllability problems for nonlinear finite-dimensional discrete 1-D and 2-D control systems with constant coefficients are formulated and discussed. Using some mapping theorems taken from nonlinear functional analysis and linear approximation methods, sufficient conditions for constrained controllability in bounded domains are derived and proved. The paper extends the controllability conditions with unconstrained controls given in the literature to cover both 1-D and 2-D nonlinear...
In this article, we consider finite dimensional dynamical control systems described by nonlinear impulsive Ito type stochastic integrodifferential equations. Necessary and sufficient conditions for complete controllability of nonlinear impulsive stochastic systems are formulated and proved under the natural assumption that the corresponding linear system is appropriately controllable. A fixed point approach is employed for achieving the required result.
This paper is concerned with the problem of controllability of semi-linear stochastic systems with time varying multiple delays in control in finite dimensional spaces. Sufficient conditions are established for the relative controllability of semilinear stochastic systems by using the Banach fixed point theorem. A numerical example is given to illustrate the application of the theoretical results. Some important comments are also presented on existing results for the stochastic controllability of...
In this paper we prove the interior approximate controllability of the following Semilinear Heat Equation with Impulses and Delay [...] where Ω is a bounded domain in RN(N ≥ 1), φ : [−r, 0] × Ω → ℝ is a continuous function, ! is an open nonempty subset of Ω, 1ω denotes the characteristic function of the set ! and the distributed control u be- longs to L2([0, τ]; L2(Ω; )). Here r ≥ 0 is the delay and the nonlinear functions f , Ik : [0, τ] × ℝ × ℝ → ℝ are smooth enough, such that [...] Under this...
We consider a finite-dimensional model for the motion of microscopic organisms whose propulsion exploits the action of a layer of cilia covering its surface. The model couples Newton's laws driving the organism, considered as a rigid body, with Stokes equations governing the surrounding fluid. The action of the cilia is described by a set of controlled velocity fields on the surface of the organism. The first contribution of the paper is the proof that such a system is generically controllable...
Some sufficient conditions for controllability of nonlinear systems described by differential equation ẋ = f(t,x(t),u(t)) are given.