Chaotic dynamics and nonlinear feedback control
The paper is dedicated to the study of the problem of existence of compact global chaotic attractors of discrete control systems and to the description of its structure. We consider so called switched systems with discrete time xn+1 = fν(n)(xn), where ν : ℤ+ ⃗ {1,2,...,m}. If m ≥ 2 we give sufficient conditions (the family M := {f1,f2,...,fm} of functions is contracting in the extended sense) for the existence of a compact global chaotic attractor. We study this problem in the framework of non-autonomous...
The contactless nature of active magnetic bearings brings about many advantages over the conventional bearing while industrial real-time applications are often limited by the significant complexity of control algorithms. This paper presents the application of an LQ controller to an active magnetic bearing system (AMB). Two control strategies are presented and compared: local and global. In the first case the rotor is modelled as two separated masses located at the bearing. In the second case rotor...
Six models of antiangiogenic therapy are compared and analyzed from control-theoretic point of view. All of them consist of a model of tumor growth bounded by the capacity of a vascular network developed by the tumor in the process of angiogenesis and different models of dynamics of this network, and are based on the idea proposed by Hahnfeldt et al. Moreover, we analyse optimal control problems resulting from their use in treatment protocol design.
The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function . The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered....
The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is studied. Local and global optimality of extremal trajectories is characterized. Lower and upper bounds on the first conjugate time are proved. The cut time is shown to be equal to the first Maxwell time corresponding to the group of discrete symmetries of the exponential mapping. Optimal synthesis on an open dense subset of the state space is described.
In this paper, a new guidance problem with the impact time constraint for cooperative attack of multiple missiles is investigated, which can be applied to salvo attack of anti-ship missiles. It can be used to guide multiple missiles to hit a stationary target simultaneously at a desirable impact time. The considered impact time control problem can be transformed into a range tracking problem. Then the range tracking problem can be viewed a consensus problem of multi-missile systems. As the application...
This paper is concerned with complete controllability of a class of nonlinear stochastic systems involving impulsive effects in a finite time interval by means of controls whose initial and final values can be assigned in advance. The result is achieved by using a fixed-point argument.
This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem. An application...
Gröbner bases for modules are used to calculate a generalized linear immersion for a plant whose solutions to its regulation equations are polynomials or pseudo-polynomials. After calculating the generalized linear immersion, we build the controller which gives the robust regulation.
We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods...
For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control 4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying periodic...
For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying...
This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function V0 is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained via a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration.
The paper deals with the control of underactuated mechanical systems between equilibrium positions across the singular positions. The considered mechanical systems are in the gravity field. The goal is to find feasible trajectory connecting the equilibrium positions that can be the basis of the system control. Such trajectory can be stabilized around both equilibrium positions and due to the gravity forces the mechanical system overcomes the singular positions. This altogether constitutes the control...
We define an extension of the classical notion of a control system which we call a control structure. This is a geometric structure which can be defined on manifolds whose underlying topology is more complicated than that of a domain in . Every control structure turns out to be locally representable as a classical control system, but our extension has the advantage that it has various naturality properties which the (classical) coordinate formulation does not, including the existence of so-called...
In the present paper, we consider the class of control systems which are induced by the action of a semi-simple Lie group on a manifold, and we give a sufficient condition which insures that such a system can be steered from any initial state to any final state by an admissible control. The class of systems considered contains, in particular, essentially all the bilinear systems. Our condition is semi-algebraic but unlike the celebrated Kalman criterion for linear systems, it is not necessary. In...