Self-tuning controls of linear stochastic systems in presence of drift
A new class of singular fractional linear systems and electrical circuits is introduced. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil decomposition and the Laplace transformation, the solution to the state equation of singular fractional linear systems is derived. It is shown that every electrical circuit is a singular fractional system if it contains at least one mesh consisting of branches only with an ideal supercapacitor and voltage sources or at least...
Sliding mode methods have been historically studied because of their strong robustness properties with regard to a certain class of uncertainty, achieved by employing nonlinear control/injection signals to force the system trajectories to attain in finite time a motion along a surface in the state-space. This paper will consider how these ideas can be exploited for fault detection (specifically fault signal estimation) and subsequently fault tolerant control. It will also describe applications of...
This paper considers a three-dimensional energy demand-supply system which typically demonstrates the relationship between the amount of energy supply and that of energy demand for the two regions in China. A delayed feedback controller is proposed to stabilize the system which was originally unstable even under some other controllers. The stability properties of the equilibrium points are subsequently analyzed and it is found that the Hopf bifurcation appears under some conditions. By using the...
In this paper, a five-dimensional energy demand-supply system has been considered. On the one hand, we analyze the stability for all of the equilibrium points of the system. For each of equilibrium point, by analyzing the characteristic equation, we show the conditions for the stability or instability using Routh-Hurwitz criterion. Then numerical simulations have been given to illustrate all of cases for the theoretical results. On the other hand, by introducing the phenomenon of time delay, we...
In the paper the concept of a controllable continuous flow in a metric space is introduced as a generalization of a controllable system of differential equations in a Banach space, and various kinds of stability and of boundedness of this flow are defined. Theorems stating necessary and sufficient conditions for particular kinds of stability and boundedness are formulated in terms of Ljapunov functions.
This paper addresses the problem of model-based global stability analysis of discrete-time Takagi-Sugeno multiregional dynamic output controllers with static antiwindup filters. The presented analyses are reduced to the problem of a feasibility study of the Linear Matrix Inequalities (LMIs), derived based on Lyapunov stability theory. Two sets of LMIs are considered candidate derived from the classical common quadratic Lyapunov function, which may in some cases be too conservative, and a fuzzy Lyapunov...