Page 1

Displaying 1 – 12 of 12

Showing per page

Mobile robot localization under stochastic communication protocol

Yanyang Lu, Bo Shen (2020)

Kybernetika

In this paper, the mobile robot localization problem is investigated under the stochastic communication protocol (SCP). In the mobile robot localization system, the measurement data including the distance and the azimuth are received by multiple sensors equipped on the robot. In order to relieve the network burden caused by network congestion, the SCP is introduced to schedule the transmission of the measurement data received by multiple sensors. The aim of this paper is to find a solution to the...

Model-based techniques for virtual sensing of longitudinal flight parameters

Georges Hardier, Cédric Seren, Pierre Ezerzere (2015)

International Journal of Applied Mathematics and Computer Science

Introduction of fly-by-wire and increasing levels of automation significantly improve the safety of civil aircraft, and result in advanced capabilities for detecting, protecting and optimizing A/C guidance and control. However, this higher complexity requires the availability of some key flight parameters to be extended. Hence, the monitoring and consolidation of those signals is a significant issue, usually achieved via many functionally redundant sensors to extend the way those parameters are...

Modeling and control of induction motors

Emmanuel Delaleau, Jean-Paul Louis, Romeo Ortega (2001)

International Journal of Applied Mathematics and Computer Science

This paper is devoted to the modeling and control of the induction motor. The well-established field oriented control is recalled and two recent control strategies are exposed, namely the passivity-based control and the flatness-based control.

Modeling of the temperature distribution of a greenhouse using finite element differential neural networks

Juan Carlos Bello-Robles, Ofelia Begovich, Javier Ruiz, Rita Quetziquel Fuentes-Aguilar (2018)

Kybernetika

Most of the existing works in the literature related to greenhouse modeling treat the temperature within a greenhouse as homogeneous. However, experimental data show that there exists a temperature spatial distribution within a greenhouse, and this gradient can produce different negative effects on the crop. Thus, the modeling of this distribution will allow to study the influence of particular climate conditions on the crop and to propose new temperature control schemes that take into account the...

Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator

Rafał Łangowski, Mietek Brdys (2007)

International Journal of Applied Mathematics and Computer Science

This paper describes the design of an interval observer for the estimation of unmeasured quality state variables in drinking water distribution systems. The estimator utilizes a set bounded model of uncertainty to produce robust interval bounds on the estimated state variables of the water quality. The bounds are generated by solving two differential equations. Hence the numerical efficiency is sufficient for on-line monitoring of the water quality. The observer is applied to an exemplary water...

Motion planning, equivalence, infinite dimensional systems

Pierre Rouchon (2001)

International Journal of Applied Mathematics and Computer Science

Motion planning, i.e., steering a system from one state to another, is a basic question in automatic control. For a certain class of systems described by ordinary differential equations and called flat systems (Fliess et al. 1995; 1999a), motion planning admits simple and explicit solutions. This stems from an explicit description of the trajectories by an arbitrary time function, the flat output, and a finite number of its time derivatives. Such explicit descriptions are related to old problems...

Currently displaying 1 – 12 of 12

Page 1