Linear uncertain non-autonomous time-delay systems: Stability and stabilizability via Riccati equations.
The problem addressed in this paper is the linearization of nonlinear systems by generalized input-output (I/O) injection. The I/O injection (called completely generalized I/O injection) depends on a finite number of time derivatives of input and output functions. The practical goal is the observer synthesis with linear error dynamics. The method is based on the I/O differential equation structure. Thus, the problem is solved as a realization one. A necessary and sufficient condition is proposed...
The aim of the paper is to provide a linearization approach to the -control problems. We begin by proving a semigroup-type behaviour of the set of constraints appearing in the linearized formulation of (standard) control problems. As a byproduct we obtain a linear formulation of the dynamic programming principle. Then, we use the approach and the associated linear formulations. This seems to be the most appropriate tool for treating problems in continuous and lower semicontinuous setting.
The aim of the paper is to provide a linearization approach to the See PDF-control problems. We begin by proving a semigroup-type behaviour of the set of constraints appearing in the linearized formulation of (standard) control problems. As a byproduct we obtain a linear formulation of the dynamic programming principle. Then, we use the See PDF approach and the associated linear formulations. This seems to be the most appropriate tool for treating See PDF problems in continuous and lower semicontinuous...
This paper studies an LMI optimization problem of delay-dependent robust stability criteria for stochastic systems with polytopic and linear fractional uncertainties. The delay is assumed to be time-varying and belong to a given interval, which means that lower and upper bounds of this interval time-varying delay are available. The uncertainty under consideration includes polytopic-type uncertainty and linear fractional norm-bounded uncertainty. Based on the new Lyapunov-Krasovskii functional, some...
Integral sliding mode design is considered for a class of uncertain systems in the presence of mismatched uncertainties in both state and input matrices, as well as norm-bounded nonlinearities and external disturbances. A sufficient condition for the robust stability of the sliding manifold is derived by means of linear matrix inequalities. The initial existence of the sliding mode is guaranteed by the proposed control law. The improvement of the proposed control scheme performances, such as chattering...
This paper deals with stability analysis of hybrid systems. Various stability concepts related to hybrid systems are introduced. The paper advocates a local analysis. It involves the equivalence relation generated by reset maps of a hybrid system. To establish a tangible method for stability analysis, we introduce the notion of a chart, which locally reduces the complexity of the hybrid system. In a chart, a hybrid system is particularly simple and can be analyzed with the use of methods borrowed...
For linear control systems with coefficients determined by a dynamical system null controllability is discussed. If uniform local null controllability holds, and if the Lyapounov exponents of the homogeneous equation are all non-positive, then the system is globally null controllable for almost all paths of the dynamical system. Even if some Lyapounov exponents are positive, an irreducibility assumption implies that, for a dense set of paths, the system is globally null controllable.
This paper considers the problem of output control of nonlinear delay systems by means of state delayed feedback. In previous papers, through the use of a suitable formalism, standard output control problems, such as output regulation, trajectory tracking, disturbance decoupling and model matching, have been solved for a class of nonlinear delay systems. However, in general an output control scheme does not guarantee internal stability of the system. Some results on this issue are presented in this...
We give a necessary and sufficient condition for local controllability around closed orbits for general smooth control systems. We also prove that any such system on a compact manifold has a closed orbit.
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
In this paper we deal with the local exact controllability of the Navier-Stokes system with nonlinear Navier-slip boundary conditions and distributed controls supported in small sets. In a first step, we prove a Carleman inequality for the linearized Navier-Stokes system, which leads to null controllability of this system at any time T>0. Then, fixed point arguments lead to the deduction of a local result concerning the exact controllability to the trajectories of the Navier-Stokes system.