The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we deal with the local exact controllability of the
Navier-Stokes system with nonlinear Navier-slip boundary
conditions and distributed controls supported in small sets. In a
first step, we prove a Carleman inequality for the linearized
Navier-Stokes system, which leads to null controllability of this
system at any time T>0. Then, fixed point arguments lead to the
deduction of a local result concerning the exact controllability
to the trajectories of the Navier-Stokes system.
We are interested by the three-dimensional coupling between an incompressible fluid and a rigid body. The fluid is modeled by the Navier-Stokes equations, while the solid satisfies the Newton's laws. In the main result of the paper we prove that, with the help of a distributed control, we can drive the fluid and structure velocities to zero and the solid to a reference position provided that the initial velocities are small enough and the initial position of the structure is close to the reference...
In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given , the system can be driven at rest and the structure to its reference configuration at time . To show this result, we first consider a linearized system....
In this paper, we prove a controllability
result for a fluid-structure interaction problem. In dimension two,
a rigid structure moves into an incompressible fluid governed by
Navier-Stokes equations. The control acts on a fixed subset of the
fluid domain. We prove that, for small initial data, this system is
null controllable, that is, for a given T > 0, the system can be
driven at rest and the structure to its reference configuration at
time T. To show this result, we first consider a linearized
system....
In the present paper, we study the problem of small-time local attainability (STLA) of a closed set. For doing this, we introduce a new concept of variations of the reachable set well adapted to a given closed set and prove a new attainability result for a general dynamical system. This provide our main result for nonlinear control systems. Some applications to linear and polynomial systems are discussed and STLA necessary and sufficient conditions are obtained when the considered set is a hyperplane....
In the present paper, we study the problem of small-time
local attainability (STLA) of a closed set.
For doing this, we introduce a new concept of variations of the
reachable set well adapted to a given closed set and prove a new
attainability result
for a general dynamical system. This provide our main result for nonlinear
control systems. Some applications to linear and polynomial systems are
discussed and STLA necessary and sufficient conditions are obtained
when the considered set...
The paper deals with a specific kind of discrete-time recurrent neural network designed with dynamic neuron models. Dynamics are reproduced within each single neuron, hence the network considered is a locally recurrent globally feedforward. A crucial problem with neural networks of the dynamic type is stability as well as stabilization in learning problems. The paper formulates local stability conditions for the analysed class of neural networks using Lyapunov's first method. Moreover, a stabilization...
The notion of locally positive nonlinear time-varying linear systems is introduced. Necessary and sufficient conditions for the local positiveness of nonlinear time-varying systems are established. The concept of local reachability in the direction of a cone is introduced, and sufficient conditions for local reachability in the direction of a cone of this class of nonlinear systems are presented.
The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able to make decisions...
A self-balancing bicycle robot based on the concept of an inverted pendulum is an unstable and nonlinear system. To stabilize the system in this work, the following three main components are required, i. e., (1) an IMU sensor that detects the tilt angle of the bicycle robot, (2) a controller that is used to control motion of a reaction wheel, and (3) a reaction wheel that is employed to produce reactionary torque to balance the bicycle robot. In this paper, we propose three control strategies: linear...
Currently displaying 41 –
56 of
56