Displaying 81 – 100 of 112

Showing per page

Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems

Cheng-Zhong Xu, Gauthier Sallet (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study the frequency and time domain behaviour of a heat exchanger network system. The system is governed by hyperbolic partial differential equations. Both the control operator and the observation operator are unbounded but admissible. Using the theory of symmetric hyperbolic systems, we prove exponential stability of the underlying semigroup for the heat exchanger network. Applying the recent theory of well-posed infinite-dimensional linear systems, we prove that the system is...

Exponential Stability and Transfer Functions of Processes Governed by Symmetric Hyperbolic Systems

Cheng-Zhong Xu, Gauthier Sallet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study the frequency and time domain behaviour of a heat exchanger network system. The system is governed by hyperbolic partial differential equations. Both the control operator and the observation operator are unbounded but admissible. Using the theory of symmetric hyperbolic systems, we prove exponential stability of the underlying semigroup for the heat exchanger network. Applying the recent theory of well-posed infinite-dimensional linear systems, we prove that the system...

Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method

Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu (2009)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes...

Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method

Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov's second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes...

Exponential stability of nonlinear systems with event-triggered schemes and its application

Zhang Li, Gang Yu, Yanjun Shen (2021)

Kybernetika

In this paper, we discuss exponential stability for nonlinear systems with sampled-data-based event-triggered schemes. First, a framework is proposed to analyze exponential stability for nonlinear systems under some different triggering conditions. Based on these results, output feedback exponential stabilization is investigated for a class of inherently nonlinear systems under a kind of event-triggered strategies. Finally, the rationality of the theoretical work is verified by numerical simulations....

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics

Pascal Morin, Claude Samson (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Exponential stabilization of nonlinear driftless affine control systems is addressed with the concern of achieving robustness with respect to imperfect knowledge of the system's control vector fields. In order to satisfy this robustness requirement, and inspired by Bennani and Rouchon [1] where the same issue was first addressed, we consider a control strategy which consists in applying periodically updated open-loop controls that are continuous with respect to state initial conditions. These...

Currently displaying 81 – 100 of 112