Loading [MathJax]/extensions/MathZoom.js
Displaying 1061 –
1080 of
2294
Interval analysis is a relatively new mathematical tool that allows one to deal with problems that may have to be solved numerically with a computer. Examples of such problems are system solving and global optimization, but numerous other problems may be addressed as well. This approach has the following general advantages: (a) it allows to find solutions of a problem only within some finite domain which make sense as soon as the unknowns in the problem are physical parameters; (b) numerical computer...
It is well–known that every system with commensurable delays can be assigned a finite spectrum by feedback, provided that it is spectrally controllable. In general, the feedback involves distributed delays, and it is defined in terms of a Volterra equation. In the case of multivariable time–delay systems, one would be interested in assigning not only the location of the poles of the closed–loop system, but also their multiplicities, or, equivalently, the invariant factors of the closed–loop system....
A control system is said to be finite if the Lie algebra generated by its vector fields
is finite dimensional. Sufficient conditions for such a system on a compact manifold to be
controllable are stated in terms of its Lie algebra. The proofs make use of the
equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010)
956–973]. and of the existence of an invariant measure on certain compact homogeneous
spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956–973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields
is finite dimensional. Sufficient conditions for such a system on a compact manifold to be
controllable are stated in terms of its Lie algebra. The proofs make use of the
equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010)
956–973]. and of the existence of an invariant measure on certain compact homogeneous
spaces.
The problem of invariant output tracking is considered: given a control system admitting a symmetry group , design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of . Invariant output errors are defined as a set of scalar invariants of ; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required...
The problem of invariant output tracking is considered: given a control system
admitting a symmetry group G, design a feedback such that the
closed-loop system tracks a desired output reference and is invariant under the action of G.
Invariant output errors are defined as a set
of scalar invariants of G; they are calculated with the Cartan moving frame
method. It is shown that standard tracking methods based on input-output linearization can be applied to
these invariant errors to yield the...
We consider inverse optimal control for linearizable nonlinear systems with input delays based on predictor control. Under a continuously reversible change of variable, a nonlinear system is transferred to a linear system. A predictor control law is designed such that the closed-loop system is asymptotically stable. We show that the basic predictor control is inverse optimal with respect to a differential game. A mechanical system is provided to illustrate the effectiveness of the proposed method....
We investigate Korteweg-de Vries-Burgers (KdVB) equation, where the dissipation and dispersion coefficients are unknown, but their lower bounds are known. First, we establish dynamic boundary controls with update laws to globally exponentially stabilize this uncertain system. Secondly, we demonstrate that the dynamic boundary control design is suboptimal to a meaningful functional after some minor modifications of the dynamic boundary controls. In addition, we also consider dynamic boundary controls...
This paper presents the role of vector relative degree in the
formulation of stationarity conditions of optimal control problems
for affine control systems. After translating the dynamics into a
normal form, we study the Hamiltonian structure. Stationarity
conditions are rewritten with a limited number of variables. The
approach is demonstrated on two and three inputs systems, then, we
prove a formal result in the general case. A mechanical system
example serves as illustration.
A new kind of linear model with partially variant coefficients is proposed and a series of iterative algorithms are introduced and verified. The new generalized linear model includes the ordinary linear regression model as a special case. The iterative algorithms efficiently overcome some difficulties in computation with multidimensional inputs and incessantly appending parameters. An important application is described at the end of this article, which shows that this new model is reasonable and...
This paper studies iterative learning control (ILC) for under-determined and over-determined systems, i.e., systems for which the control action to produce the desired output is not unique, or for which exact tracking of the desired trajectory is not feasible. For both cases we recommend the use of the pseudoinverse or its approximation as a learning operator. The Tikhonov regularization technique is discussed for computing the pseudoinverse to handle numerical instability. It is shown that for...
The area if Iterative Learning Control (ILC) has great potential for applications to systems with a naturally repetitive action where the transfer of data from repetition (trial or iteration) can lead to substantial improvements in tracking performance. There are several serious issues arising from the "2D" structure of ILC and a number of new problems requiring new ways of thinking and design. This paper introduces some of these issues from the point of view of the research group at Sheffield University...
Currently displaying 1061 –
1080 of
2294