Displaying 41 – 60 of 150

Showing per page

Discretization schemes for Lyapunov-Krasovskii functionals in time-delay systems

Keqin Gu (2001)

Kybernetika

This article gives an overview of discretized Lyapunov functional methods for time-delay systems. Quadratic Lyapunov–Krasovskii functionals are discretized by choosing the kernel to be piecewise linear. As a result, the stability conditions may be written in the form of linear matrix inequalities. Conservatism may be reduced by choosing a finer mesh. Simplification techniques, including elimination of variables and using integral inequalities are also discussed. Systems with multiple delays and...

Estimates for perturbations of discounted Markov chains on general spaces

Raúl Montes-de-Oca, Alexander Sakhanenko, Francisco Salem-Silva (2003)

Applicationes Mathematicae

We analyse a Markov chain and perturbations of the transition probability and the one-step cost function (possibly unbounded) defined on it. Under certain conditions, of Lyapunov and Harris type, we obtain new estimates of the effects of such perturbations via an index of perturbations, defined as the difference of the total expected discounted costs between the original Markov chain and the perturbed one. We provide an example which illustrates our analysis.

Extended lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems

Guisheng Zhai, Xuping Xu, Hai Lin, Derong Liu (2007)

International Journal of Applied Mathematics and Computer Science

We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By considering a Lie algebra generated by all subsystem matrices, we show that if all subsystems are Hurwitz/Schur stable and this Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched system is exponentially stable under arbitrary switching. When not all subsystems are stable and the same Lie algebra is solvable, we show...

Functional observers design for nonlinear discrete-time systems with interval time-varying delays

Yali Dong, Laijun Chen, Shengwei Mei (2019)

Kybernetika

This paper is concerned with the functional observer design for a class of Multi-Input Multi-Output discrete-time systems with mixed time-varying delays. Firstly, using the Lyapunov-Krasovskii functional approach, we design the parameters of the delay-dependent observer. We establish the sufficient conditions to guarantee the exponential stability of functional observer error system. In addition, for design purposes, delay-dependent sufficient conditions are proposed in terms of matrix inequalities...

Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication

Hongtao Liang, Zhen Wang, Zongmin Yue, Ronghui Lu (2012)

Kybernetika

A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are...

Global synchronization of chaotic Lur’e systems via replacing variables control

Xiaofeng Wu, Yi Zhao, Muhong Wang (2008)

Kybernetika

Finding sufficient criteria for synchronization of master-slave chaotic systems by replacing variables control has been an open problem in the field of chaos control. This paper presents some recent works on the subject, with emphasis on chaos synchronization of both identical and parametrically mismatched Lur’e systems by replacing variables control. The synchronization schemes are formally constructed and two classes of sufficient criteria for global synchronization, linear matrix inequality criterion...

Homogeneous approximations and local observer design

Tomas Ménard, Emmanuel Moulay, Wilfrid Perruquetti (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the construction of local observers for nonlinear systems without inputs, satisfying an observability rank condition. The aim of this study is, first, to define an homogeneous approximation that keeps the observability property unchanged at the origin. This approximation is further used in the synthesis of a local observer which is proven to be locally convergent for Lyapunov-stable systems. We compare the performance of the homogeneous approximation observer with the...

Infinite-dimensional LMI approach to analysis and synthesis for linear time-delay systems

Kojiro Ikeda, Takehito Azuma, Kenko Uchida (2001)

Kybernetika

This paper considers an analysis and synthesis problem of controllers for linear time-delay systems in the form of delay-dependent memory state feedback, and develops an Linear Matrix Inequality (LMI) approach. First, we present an existence condition and an explicit formula of controllers, which guarantee a prescribed level of L 2 gain of closed loop systems, in terms of infinite-dimensional LMIs. This result is rather general in the sense that it covers, as special cases, some known results for...

Currently displaying 41 – 60 of 150