Loading [MathJax]/extensions/MathZoom.js
Displaying 41 –
60 of
375
This work is concerned with stabilization of a wave equation by a linear boundary term combining frictional and memory damping on part of the boundary. We prove that the energy decays to zero exponentially if the kernel decays exponentially at infinity. We consider a slightly different boundary condition than the one used by M. Aassila et al. [Calc. Var. 15, 2002]. This allows us to avoid the assumption that the part of the boundary where the feedback is active is strictly star-shaped. The result...
In this paper a steering control algorithm for the Extended Nonholonomic Double Integrator is presented. An adaptive backstepping based controller is proposed which yields asymptotic stabilization and convergence of the closed loop system to the origin. This is achieved by transforming the original system into a new system which can be globally asymptotically stabilized. Once the new system is stabilized, the stability of the original system can be easily established. Stability of the closed loop...
For linear periodic discrete-time systems the analysis of the model error introduced by a truncation on the balanced minimal realization is performed, and a bound for the infinity norm of the model error is introduced. The results represent an extension to the periodic systems of the well known results on the balanced truncation for time-invariant systems. The general case of periodically time-varying state-space dimension has been considered.
In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...
In this paper, we consider the boundary stabilization of a
sandwich beam which consists of two outer stiff layers and a
compliant middle layer. Using Riesz basis approach, we show that
there is a sequence of generalized eigenfunctions, which forms a
Riesz basis in the state space. As a consequence, the
spectrum-determined growth condition as well as the exponential
stability of the closed-loop system are concluded. Finally, the
well-posedness and regularity in the sense of Salamon-Weiss class
as...
We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.
We consider the stabilization of
Maxwell's equations with space-time variable coefficients
in a bounded region with a smooth boundary
by means of linear or nonlinear Silver–Müller boundary condition.
This is based on some stability estimates
that are obtained using the “standard" identity with multiplier
and appropriate properties of the feedback.
We deduce an explicit decay rate of the energy, for instance
exponential,
polynomial or logarithmic decays are available for appropriate
feedbacks.
...
We propose a direct approach to obtain the boundary stabilization of the isotropic linear elastodynamic system by a natural feedback; this method uses local coordinates in the expression of boundary integrals as a main tool. It leads to an explicit decay rate of the energy function and requires weak geometrical conditions: for example, the spacial domain can be the difference of two star-shaped sets.
A circle criterion is obtained for a SISO Lur’e feedback control system consist- ing of a nonlinear static sector-type controller and a linear boundary control system in factor form on an infinite-dimensional Hilbert state space H previ- ously introduced by the authors (Grabowski and Callier, 1999). It is assumed for the latter that (a) the observation functional is infinite-time admissible, (b) the factor control vector satisfies a compatibility condition, and (c) the trans- fer function belongs...
This paper deals with the problem of stabilizing a system in the presence of
small measurement errors. It is known that, for general stabilizable systems,
there may be no possible memoryless state feedback which is robust with
respect to such errors. In contrast, a precise result is given here, showing
that, if a (continuous-time, finite-dimensional) system is stabilizable in any
way whatsoever (even by means of a dynamic, time varying, discontinuous,
feedback) then it can also be semiglobally...
In this paper, a new control concept for a class of underactuated mechanical system is introduced. Namely, the class of -link chains, composed of rigid links, non actuated at the pivot point is considered. Underactuated mechanical systems are those having less actuators than degrees of freedom and thereby requiring more sophisticated nonlinear control methods. This class of systems includes among others frequently used for the modeling of walking planar structures. This paper presents the stabilization...
This paper presents an algebraic design theory for interconnected systems. Usual multivariable linear systems are described in a unified way. Both square and nonsquare plants and controllers are included in the study and an easy characterization of the achievable I/O (input-to-output) and D/O (disturbance-to-output) maps is presented through the use of appropriate controllers. Sufficient conditions of stability are given.
Currently displaying 41 –
60 of
375