Sampling and Interpolating Sequences for Multiband-Limited Functions and Exponential Bases on Disconnected Sets.
The aim is to reconstruct a signal function x ∈ L₂ if the phase of the Fourier transform [x̂] and some additional a-priori information of convex type are known. The problem can be described as a convex feasibility problem. We solve this problem by different Fejér monotone iterative methods comparing the results and discussing the choice of relaxation parameters. Since the a-priori information is partly related to the spectral space the Fourier transform and its inverse have to be applied in each...
2000 Mathematics Subject Classification: 94A12, 94A20, 30D20, 41A05.We characterize Paley-Wiener-Schwartz space of entire functions as a union of three-parametric linear normed subspaces determined by the type of the entire functions, their polynomial asymptotic on the real line, and the index p ≥ 1 of a Sobolev type Lp-summability on the real line with an appropriate weight function. An entire function belonging to a sub-space of the decomposition is exactly recovered by a sampling series, locally...
Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.
Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.