The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A graph is 1-planar if it can be drawn in the Euclidean plane so that each edge is crossed by at most one other edge. A 1-planar graph on vertices is optimal if it has edges. We prove that 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable (in the sense that each of the four color classes induces a subgraph of maximum degree one). Inspired by the decomposition of 1-planar graphs, we conjecture that every 1-planar graph is (2,2,2,0,0)-colorable.
The trivial lower bound for the 2-distance chromatic number χ₂(G) of any graph G with maximum degree Δ is Δ+1. It is known that χ₂ = Δ+1 if the girth g of G is at least 7 and Δ is large enough. There are graphs with arbitrarily large Δ and g ≤ 6 having χ₂(G) ≥ Δ+2. We prove the 2-distance 4-colorability of planar subcubic graphs with g ≥ 22.
A variation of graph coloring known as a t-tone k-coloring assigns a set of t colors to each vertex of a graph from the set {1, . . . , k}, where the sets of colors assigned to any two vertices distance d apart share fewer than d colors in common. The minimum integer k such that a graph G has a t- tone k-coloring is known as the t-tone chromatic number. We study the 2-tone chromatic number in three different graph products. In particular, given graphs G and H, we bound the 2-tone chromatic number...
A 3-consecutive C-coloring of a graph G = (V,E) is a mapping φ:V → ℕ such that every path on three vertices has at most two colors. We prove general estimates on the maximum number of colors in a 3-consecutive C-coloring of G, and characterize the structure of connected graphs with for k = 3 and k = 4.
For a graph G = (V,E) without isolated vertices, a subset D of vertices of V is a total dominating set (TDS) of G if every vertex in V is adjacent to a vertex in D. The total domination number γₜ(G) is the minimum cardinality of a TDS of G. A subset D of V which is a total dominating set, is a locating-total dominating set, or just a LTDS of G, if for any two distinct vertices u and v of V(G)∖D, . The locating-total domination number is the minimum cardinality of a locating-total dominating set...
A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.
A graph is called weakly perfect if its chromatic number equals its clique number. In this note a new class of weakly perfect graphs is presented and an explicit formula for the chromatic number of such graphs is given.
A graph G = (V,E) is called a split graph if there exists a partition V = I∪K such that the subgraphs G[I] and G[K] of G induced by I and K are empty and complete graphs, respectively. In 1980, Burkard and Hammer gave a necessary condition for a split graph G with |I| < |K| to be hamiltonian. We will call a split graph G with |I| < |K| satisfying this condition a Burkard-Hammer graph. Further, a split graph G is called a maximal nonhamiltonian split graph if G is nonhamiltonian but G+uv is...
The Erdős-Faber-Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.
An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed trees...
Lovász gave a short proof of Brooks’ theorem by coloring greedily in a good order. We give a different short proof by reducing to the cubic case.
Currently displaying 1 –
20 of
719