The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 719

Showing per page

1-planar graphs with girth at least 6 are (1,1,1,1)-colorable

Lili Song, Lei Sun (2023)

Czechoslovak Mathematical Journal

A graph is 1-planar if it can be drawn in the Euclidean plane so that each edge is crossed by at most one other edge. A 1-planar graph on n vertices is optimal if it has 4 n - 8 edges. We prove that 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable (in the sense that each of the four color classes induces a subgraph of maximum degree one). Inspired by the decomposition of 1-planar graphs, we conjecture that every 1-planar graph is (2,2,2,0,0)-colorable.

2-distance 4-colorability of planar subcubic graphs with girth at least 22

Oleg V. Borodin, Anna O. Ivanova (2012)

Discussiones Mathematicae Graph Theory

The trivial lower bound for the 2-distance chromatic number χ₂(G) of any graph G with maximum degree Δ is Δ+1. It is known that χ₂ = Δ+1 if the girth g of G is at least 7 and Δ is large enough. There are graphs with arbitrarily large Δ and g ≤ 6 having χ₂(G) ≥ Δ+2. We prove the 2-distance 4-colorability of planar subcubic graphs with g ≥ 22.

2-Tone Colorings in Graph Products

Jennifer Loe, Danielle Middelbrooks, Ashley Morris, Kirsti Wash (2015)

Discussiones Mathematicae Graph Theory

A variation of graph coloring known as a t-tone k-coloring assigns a set of t colors to each vertex of a graph from the set {1, . . . , k}, where the sets of colors assigned to any two vertices distance d apart share fewer than d colors in common. The minimum integer k such that a graph G has a t- tone k-coloring is known as the t-tone chromatic number. We study the 2-tone chromatic number in three different graph products. In particular, given graphs G and H, we bound the 2-tone chromatic number...

3-consecutive c-colorings of graphs

Csilla Bujtás, E. Sampathkumar, Zsolt Tuza, M.S. Subramanya, Charles Dominic (2010)

Discussiones Mathematicae Graph Theory

A 3-consecutive C-coloring of a graph G = (V,E) is a mapping φ:V → ℕ such that every path on three vertices has at most two colors. We prove general estimates on the maximum number ( χ ̅ ) 3 C C ( G ) of colors in a 3-consecutive C-coloring of G, and characterize the structure of connected graphs with ( χ ̅ ) 3 C C ( G ) k for k = 3 and k = 4.

A characterization of locating-total domination edge critical graphs

Mostafa Blidia, Widad Dali (2011)

Discussiones Mathematicae Graph Theory

For a graph G = (V,E) without isolated vertices, a subset D of vertices of V is a total dominating set (TDS) of G if every vertex in V is adjacent to a vertex in D. The total domination number γₜ(G) is the minimum cardinality of a TDS of G. A subset D of V which is a total dominating set, is a locating-total dominating set, or just a LTDS of G, if for any two distinct vertices u and v of V(G)∖D, N G ( u ) D N G ( v ) D . The locating-total domination number γ L t ( G ) is the minimum cardinality of a locating-total dominating set...

A class of tight circulant tournaments

Hortensia Galeana-Sánchez, Víctor Neumann-Lara (2000)

Discussiones Mathematicae Graph Theory

A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.

A class of weakly perfect graphs

H. R. Maimani, M. R. Pournaki, S. Yassemi (2010)

Czechoslovak Mathematical Journal

A graph is called weakly perfect if its chromatic number equals its clique number. In this note a new class of weakly perfect graphs is presented and an explicit formula for the chromatic number of such graphs is given.

A classification for maximal nonhamiltonian Burkard-Hammer graphs

Ngo Dac Tan, Chawalit Iamjaroen (2008)

Discussiones Mathematicae Graph Theory

A graph G = (V,E) is called a split graph if there exists a partition V = I∪K such that the subgraphs G[I] and G[K] of G induced by I and K are empty and complete graphs, respectively. In 1980, Burkard and Hammer gave a necessary condition for a split graph G with |I| < |K| to be hamiltonian. We will call a split graph G with |I| < |K| satisfying this condition a Burkard-Hammer graph. Further, a split graph G is called a maximal nonhamiltonian split graph if G is nonhamiltonian but G+uv is...

A clone-theoretic formulation of the Erdos-Faber-Lovász conjecture

Lucien Haddad, Claude Tardif (2004)

Discussiones Mathematicae Graph Theory

The Erdős-Faber-Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.

A decomposition of gallai multigraphs

Alexander Halperin, Colton Magnant, Kyle Pula (2014)

Discussiones Mathematicae Graph Theory

An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed trees...

A Different Short Proof of Brooks’ Theorem

Landon Rabern (2014)

Discussiones Mathematicae Graph Theory

Lovász gave a short proof of Brooks’ theorem by coloring greedily in a good order. We give a different short proof by reducing to the cubic case.

Currently displaying 1 – 20 of 719

Page 1 Next