Displaying 101 – 120 of 134

Showing per page

On the rainbow connection of Cartesian products and their subgraphs

Sandi Klavžar, Gašper Mekiš (2012)

Discussiones Mathematicae Graph Theory

Rainbow connection number of Cartesian products and their subgraphs are considered. Previously known bounds are compared and non-existence of such bounds for subgraphs of products are discussed. It is shown that the rainbow connection number of an isometric subgraph of a hypercube is bounded above by the rainbow connection number of the hypercube. Isometric subgraphs of hypercubes with the rainbow connection number as small as possible compared to the rainbow connection of the hypercube are constructed....

On the Rainbow Vertex-Connection

Xueliang Li, Yongtang Shi (2013)

Discussiones Mathematicae Graph Theory

A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertexconnected. It was proved that if G is a graph of order n with minimum degree δ, then rvc(G) < 11n/δ. In this paper, we show that rvc(G) ≤ 3n/(δ+1)+5 for [xxx] and n ≥ 290, while rvc(G) ≤ 4n/(δ + 1) + 5...

On the rooted Tutte polynomial

F. Y. Wu, C. King, W. T. Lu (1999)

Annales de l'institut Fourier

The Tutte polynomial is a generalization of the chromatic polynomial of graph colorings. Here we present an extension called the rooted Tutte polynomial, which is defined on a graph where one or more vertices are colored with prescribed colors. We establish a number of results pertaining to the rooted Tutte polynomial, including a duality relation in the case that all roots reside around a single face of a planar graph.

On the second Laplacian spectral moment of a graph

Ying Liu, Yu Qin Sun (2010)

Czechoslovak Mathematical Journal

Kragujevac (M. L. Kragujevac: On the Laplacian energy of a graph, Czech. Math. J. 56(131) (2006), 1207–1213) gave the definition of Laplacian energy of a graph G and proved L E ( G ) 6 n - 8 ; equality holds if and only if G = P n . In this paper we consider the relation between the Laplacian energy and the chromatic number of a graph G and give an upper bound for the Laplacian energy on a connected graph.

On the strong parity chromatic number

Július Czap, Stanislav Jendroľ, František Kardoš (2011)

Discussiones Mathematicae Graph Theory

A vertex colouring of a 2-connected plane graph G is a strong parity vertex colouring if for every face f and each colour c, the number of vertices incident with f coloured by c is either zero or odd. Czap et al. in [9] proved that every 2-connected plane graph has a proper strong parity vertex colouring with at most 118 colours. In this paper we improve this upper bound for some classes of plane graphs.

On the structural result on normal plane maps

Tomás Madaras, Andrea Marcinová (2002)

Discussiones Mathematicae Graph Theory

We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by 6 + [ ( 2 D + 12 ) / ( D - 2 ) ] ( ( D - 1 ) ( t - 1 ) - 1 ) . This improves a recent bound 6 + [ ( 3 D + 3 ) / ( D - 2 ) ] ( ( D - 1 ) t - 1 - 1 ) , D ≥ 8 by Jendrol’ and Skupień, and the upper bound for distance-2 chromatic number.

On the Weight of Minor Faces in Triangle-Free 3-Polytopes

Oleg V. Borodin, Anna O. Ivanova (2016)

Discussiones Mathematicae Graph Theory

The weight w(f) of a face f in a 3-polytope is the degree-sum of vertices incident with f. It follows from Lebesgue’s results of 1940 that every triangle-free 3-polytope without 4-faces incident with at least three 3-vertices has a 4-face with w ≤ 21 or a 5-face with w ≤ 17. Here, the bound 17 is sharp, but it was still unknown whether 21 is sharp. The purpose of this paper is to improve this 21 to 20, which is best possible.

On Twin Edge Colorings of Graphs

Eric Andrews, Laars Helenius, Daniel Johnston, Jonathon VerWys, Ping Zhang (2014)

Discussiones Mathematicae Graph Theory

A twin edge k-coloring of a graph G is a proper edge coloring of G with the elements of Zk so that the induced vertex coloring in which the color of a vertex v in G is the sum (in Zk) of the colors of the edges incident with v is a proper vertex coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Among the results presented are formulas for the twin chromatic index of each complete graph and each complete bipartite graph

On uniquely partitionable relational structures and object systems

Jozef Bucko, Peter Mihók (2006)

Discussiones Mathematicae Graph Theory

We introduce object systems as a common generalization of graphs, hypergraphs, digraphs and relational structures. Let C be a concrete category, a simple object system over C is an ordered pair S = (V,E), where E = A₁,A₂,...,Aₘ is a finite set of the objects of C, such that the ground-set V ( A i ) of each object A i E is a finite set with at least two elements and V i = 1 m V ( A i ) . To generalize the results on graph colourings to simple object systems we define, analogously as for graphs, that an additive induced-hereditary...

On universal graphs for hom-properties

Peter Mihók, Jozef Miškuf, Gabriel Semanišin (2009)

Discussiones Mathematicae Graph Theory

A graph property is any isomorphism closed class of simple graphs. For a simple finite graph H, let → H denote the class of all simple countable graphs that admit homomorphisms to H, such classes of graphs are called hom-properties. Given a graph property 𝓟, a graph G ∈ 𝓟 is universal in 𝓟 if each member of 𝓟 is isomorphic to an induced subgraph of G. In particular, we consider universal graphs in → H and we give a new proof of the existence of a universal graph in → H, for any finite graph...

Currently displaying 101 – 120 of 134