The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 381 –
400 of
430
We introduce the notions of T-Rickart and strongly T-Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that R is right Σ-t-extending if and only if every R-module is T-Rickart. Also, every free R-module is T-Rickart if and only if , where R’ is a hereditary right R-module. Examples illustrating the results are presented.
The growth function of a graph with respect to a vertex is near polynomial if there exists a polynomial bounding it above for infinitely many positive integers. In the paper vertex-symmetric undirected graphs and vertex-symmetric directed graphs with coinciding in- and out-degrees are described in the case their growth functions are near polynomial.
A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order are classified, where , are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order , and that for odd primes and , there is an infinite family of connected valency seven one-regular graphs of order with solvable automorphism groups, and there are four sporadic ones...
Given a graph G = (V,E) of order n and a finite abelian group H = (H,+) of order n, a bijection f of V onto H is called a vertex H-labeling of G. Let g(e) ≡ (f(u)+f(v)) mod H for each edge e = u,v in E induce an edge H-labeling of G. Then, the sum is called the H-value of G relative to f and the set HvalS(G) of all H-values of G over all possible vertex H-labelings is called the H-value set of G. Theorems determining HvalS(G) for given H and G are obtained.
We establish an exact formula for the word distance on the discrete Heisenberg group ℍ₃ with its standard set of generators. This formula is then used to prove the almost connectedness of the spheres for this distance.
In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.
Currently displaying 381 –
400 of
430