Displaying 101 – 120 of 376

Showing per page

Disjoint 5-cycles in a graph

Hong Wang (2012)

Discussiones Mathematicae Graph Theory

We prove that if G is a graph of order 5k and the minimum degree of G is at least 3k then G contains k disjoint cycles of length 5.

Distance perfectness of graphs

Andrzej Włoch (1999)

Discussiones Mathematicae Graph Theory

In this paper, we propose a generalization of well known kinds of perfectness of graphs in terms of distances between vertices. We introduce generalizations of α-perfect, χ-perfect, strongly perfect graphs and we establish the relations between them. Moreover, we give sufficient conditions for graphs to be perfect in generalized sense. Other generalizations of perfectness are given in papers [3] and [7].

Dominant-matching graphs

Igor' E. Zverovich, Olga I. Zverovich (2004)

Discussiones Mathematicae Graph Theory

We introduce a new hereditary class of graphs, the dominant-matching graphs, and we characterize it in terms of forbidden induced subgraphs.

Dominating bipartite subgraphs in graphs

Gábor Bacsó, Danuta Michalak, Zsolt Tuza (2005)

Discussiones Mathematicae Graph Theory

A graph G is hereditarily dominated by a class 𝓓 of connected graphs if each connected induced subgraph of G contains a dominating induced subgraph belonging to 𝓓. In this paper we characterize graphs hereditarily dominated by classes of complete bipartite graphs, stars, connected bipartite graphs, and complete k-partite graphs.

Domination and independence subdivision numbers of graphs

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi (2000)

Discussiones Mathematicae Graph Theory

The domination subdivision number s d γ ( G ) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of adjacent vertices...

Domination and leaf density in graphs

Anders Sune Pedersen (2005)

Discussiones Mathematicae Graph Theory

The domination number γ(G) of a graph G is the minimum cardinality of a subset D of V(G) with the property that each vertex of V(G)-D is adjacent to at least one vertex of D. For a graph G with n vertices we define ε(G) to be the number of leaves in G minus the number of stems in G, and we define the leaf density ζ(G) to equal ε(G)/n. We prove that for any graph G with no isolated vertex, γ(G) ≤ n(1- ζ(G))/2 and we characterize the extremal graphs for this bound. Similar results are obtained for...

Domination in partitioned graphs

Zsolt Tuza, Preben Dahl Vestergaard (2002)

Discussiones Mathematicae Graph Theory

Let V₁, V₂ be a partition of the vertex set in a graph G, and let γ i denote the least number of vertices needed in G to dominate V i . We prove that γ₁+γ₂ ≤ [4/5]|V(G)| for any graph without isolated vertices or edges, and that equality occurs precisely if G consists of disjoint 5-paths and edges between their centers. We also give upper and lower bounds on γ₁+γ₂ for graphs with minimum valency δ, and conjecture that γ₁+γ₂ ≤ [4/(δ+3)]|V(G)| for δ ≤ 5. As δ gets large, however, the largest possible value...

Edge cycle extendable graphs

Terry A. McKee (2012)

Discussiones Mathematicae Graph Theory

A graph is edge cycle extendable if every cycle C that is formed from edges and one chord of a larger cycle C⁺ is also formed from edges and one chord of a cycle C' of length one greater than C with V(C') ⊆ V(C⁺). Edge cycle extendable graphs are characterized by every block being either chordal (every nontriangular cycle has a chord) or chordless (no nontriangular cycle has a chord); equivalently, every chord of a cycle of length five or more has a noncrossing chord.

Edge-connectivity of strong products of graphs

Bostjan Bresar, Simon Spacapan (2007)

Discussiones Mathematicae Graph Theory

The strong product G₁ ⊠ G₂ of graphs G₁ and G₂ is the graph with V(G₁)×V(G₂) as the vertex set, and two distinct vertices (x₁,x₂) and (y₁,y₂) are adjacent whenever for each i ∈ 1,2 either x i = y i or x i y i E ( G i ) . In this note we show that for two connected graphs G₁ and G₂ the edge-connectivity λ (G₁ ⊠ G₂) equals minδ(G₁ ⊠ G₂), λ(G₁)(|V(G₂)| + 2|E(G₂)|), λ(G₂)(|V(G₁)| + 2|E(G₁)|). In addition, we fully describe the structure of possible minimum edge cut sets in strong products of graphs.

Edit distance measure for graphs

Tomasz Dzido, Krzysztof Krzywdziński (2015)

Czechoslovak Mathematical Journal

In this paper, we investigate a measure of similarity of graphs similar to the Ramsey number. We present values and bounds for g ( n , l ) , the biggest number k guaranteeing that there exist l graphs on n vertices, each two having edit distance at least k . By edit distance of two graphs G , F we mean the number of edges needed to be added to or deleted from graph G to obtain graph F . This new extremal number g ( n , l ) is closely linked to the edit distance of graphs. Using probabilistic methods we show that g ( n , l ) is close...

End Simplicial Vertices in Path Graphs

Marisa Gutierrez, Silvia B. Tondato (2016)

Discussiones Mathematicae Graph Theory

A graph is a path graph if there is a tree, called UV -model, whose vertices are the maximal cliques of the graph and for each vertex x of the graph the set of maximal cliques that contains it induces a path in the tree. A graph is an interval graph if there is a UV -model that is a path, called an interval model. Gimbel [3] characterized those vertices in interval graphs for which there is some interval model where the interval corresponding to those vertices is an end interval. In this work, we...

Equations relating factors in decompositions into factors of some family of plane triangulations, and applications (with an appendix by Andrzej Schinzel)

Jan Florek (2015)

Colloquium Mathematicae

Let be the family of all 2-connected plane triangulations with vertices of degree three or six. Grünbaum and Motzkin proved (in dual terms) that every graph P ∈ has a decomposition into factors P₀, P₁, P₂ (indexed by elements of the cyclic group Q = 0,1,2) such that every factor P q consists of two induced paths of the same length M(q), and K(q) - 1 induced cycles of the same length 2M(q). For q ∈ Q, we define an integer S⁺(q) such that the vector (K(q),M(q),S⁺(q)) determines the graph P (if P is...

Currently displaying 101 – 120 of 376