The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 461 – 480 of 585

Showing per page

Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings

Mitra Jalali, Abolfazl Tehranian, Reza Nikandish, Hamid Rasouli (2020)

Commentationes Mathematicae Universitatis Carolinae

Let R be a commutative ring with identity and A ( R ) be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of R is defined as the graph SAG ( R ) with the vertex set A ( R ) * = A ( R ) { 0 } and two distinct vertices I and J are adjacent if and only if I Ann ( J ) ( 0 ) and J Ann ( I ) ( 0 ) . In this paper, the perfectness of SAG ( R ) for some classes of rings R is investigated.

Some results on the annihilator graph of a commutative ring

Mojgan Afkhami, Kazem Khashyarmanesh, Zohreh Rajabi (2017)

Czechoslovak Mathematical Journal

Let R be a commutative ring. The annihilator graph of R , denoted by AG ( R ) , is the undirected graph with all nonzero zero-divisors of R as vertex set, and two distinct vertices x and y are adjacent if and only if ann R ( x y ) ann R ( x ) ann R ( y ) , where for z R , ann R ( z ) = { r R : r z = 0 } . In this paper, we characterize all finite commutative rings R with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings R whose annihilator graphs have clique number 1 , 2 or 3 . Also, we investigate some properties of the annihilator...

Stable graphs

Klaus-Peter Podewski, Martin Ziegler (1978)

Fundamenta Mathematicae

Currently displaying 461 – 480 of 585