The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1981 – 2000 of 3028

Showing per page

On the error term of the logarithm of the lcm of a quadratic sequence

Juanjo Rué, Paulius Šarka, Ana Zumalacárregui (2013)

Journal de Théorie des Nombres de Bordeaux

We study the logarithm of the least common multiple of the sequence of integers given by 1 2 + 1 , 2 2 + 1 , , n 2 + 1 . Using a result of Homma [5] on the distribution of roots of quadratic polynomials modulo primes we calculate the error term for the asymptotics obtained by Cilleruelo [3].

On the Euclidean minimum of some real number fields

Eva Bayer-Fluckiger, Gabriele Nebe (2005)

Journal de Théorie des Nombres de Bordeaux

General methods from [3] are applied to give good upper bounds on the Euclidean minimum of real quadratic fields and totally real cyclotomic fields of prime power discriminant.

On the Euler function of repdigits

Florian Luca (2008)

Czechoslovak Mathematical Journal

For a positive integer n we write φ ( n ) for the Euler function of n . In this note, we show that if b > 1 is a fixed positive integer, then the equation φ x b n - 1 b - 1 = y b m - 1 b - 1 , where x , y { 1 , ... , b - 1 } , has only finitely many positive integer solutions ( x , y , m , n ) .

On the Euler Function on Differences Between the Coordinates of Points on Modular Hyperbolas

Igor E. Shparlinski (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

For a prime p > 2, an integer a with gcd(a,p) = 1 and real 1 ≤ X,Y < p, we consider the set of points on the modular hyperbola a , p ( X , Y ) = ( x , y ) : x y a ( m o d p ) , 1 x X , 1 y Y . We give asymptotic formulas for the average values ( x , y ) a , p ( X , Y ) x y * φ ( | x - y | ) / | x - y | and ( x , y ) a , p ( X , X ) x y * φ ( | x - y | ) with the Euler function φ(k) on the differences between the components of points of a , p ( X , Y ) .

On the exact location of the non-trivial zeros of Riemann's zeta function

Juan Arias de Reyna, Jan van de Lune (2014)

Acta Arithmetica

We introduce the real valued real analytic function κ(t) implicitly defined by e 2 π i κ ( t ) = - e - 2 i ϑ ( t ) ( ζ ' ( 1 / 2 - i t ) ) / ( ζ ' ( 1 / 2 + i t ) ) (κ(0) = -1/2). By studying the equation κ(t) = n (without making any unproved hypotheses), we show that (and how) this function is closely related to the (exact) position of the zeros of Riemann’s ζ(s) and ζ’(s). Assuming the Riemann hypothesis and the simplicity of the zeros of ζ(s), it follows that the ordinate of the zero 1/2 + iγₙ of ζ(s) is the unique solution to the equation κ(t) = n.

Currently displaying 1981 – 2000 of 3028