Displaying 2061 – 2080 of 3028

Showing per page

On the fundamental units of some cubic orders generated by units

Jun Ho Lee, Stéphane R. Louboutin (2014)

Acta Arithmetica

Let ϵ be a totally real cubic algebraic unit. Assume that the cubic number field ℚ(ϵ) is Galois. Let ϵ, ϵ' and ϵ'' be the three real conjugates of ϵ. We tackle the problem of whether {ϵ,ϵ'} is a system of fundamental units of the cubic order ℤ[ϵ,ϵ',ϵ'']. Given two units of a totally real cubic order, we explain how one can prove that they form a system of fundamental units of this order. Several explicit families of totally real cubic orders defined by parametrized families of cubic polynomials...

On the Galois group of generalized Laguerre polynomials

Farshid Hajir (2005)

Journal de Théorie des Nombres de Bordeaux

Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed α - < 0 , Filaseta and Lam have shown that the n th degree Generalized Laguerre Polynomial L n ( α ) ( x ) = j = 0 n n + α n - j ( - x ) j / j ! is irreducible for all large enough n . We use our criterion to show that, under these conditions, the Galois group of L n ( α ) ( x ) is either the alternating or symmetric group on n letters, generalizing results of Schur for α = 0 , 1 , ± 1 2 , - 1 - n .

On the Galois structure of the square root of the codifferent

D. Burns (1991)

Journal de théorie des nombres de Bordeaux

Let L be a finite abelian extension of , with 𝒪 L the ring of algebraic integers of L . We investigate the Galois structure of the unique fractional 𝒪 L -ideal which (if it exists) is unimodular with respect to the trace form of L / .

On the gaps between q -binomial coefficients

Florian Luca, Sylvester Manganye (2021)

Communications in Mathematics

In this note, we estimate the distance between two q -nomial coefficients n k q - n ' k ' q , where ( n , k ) ( n ' , k ' ) and q 2 is an integer.

On the generalized Bernoulli numbers that belong to unequal characters.

Ilya Sh. Slavutskii (2000)

Revista Matemática Iberoamericana

The study of class number invariants of absolute abelian fields, the investigation of congruences for special values of L-functions, Fourier coefficients of half-integral weight modular forms, Rubin's congruences involving the special values of L-functions of elliptic curves with complex multiplication, and many other problems require congruence properties of the generalized Bernoulli numbers (see [16]-[18], [12], [29], [3], etc.). The first steps in this direction can be found in the papers of...

On the generalized Davenport constant and the Noether number

Kálmán Cziszter, Mátyás Domokos (2013)

Open Mathematics

Known results on the generalized Davenport constant relating zero-sum sequences over a finite abelian group are extended for the generalized Noether number relating rings of polynomial invariants of an arbitrary finite group. An improved general upper degree bound for polynomial invariants of a non-cyclic finite group that cut out the zero vector is given.

On the generalized Fermat equation over totally real fields

Heline Deconinck (2016)

Acta Arithmetica

In a recent paper, Freitas and Siksek proved an asymptotic version of Fermat’s Last Theorem for many totally real fields. We prove an extension of their result to generalized Fermat equations of the form A x p + B y p + C z p = 0 , where A, B, C are odd integers belonging to a totally real field.

On the generalized principal ideal theorem of complex multiplication

Reinhard Schertz (2006)

Journal de Théorie des Nombres de Bordeaux

In the p n -th cyclotomic field p n , p a prime number, n , the prime p is totally ramified and the only ideal above p is generated by ω n = ζ p n - 1 , with the primitive p n -th root of unity ζ p n = e 2 π i p n . Moreover these numbers represent a norm coherent set, i.e. N p n + 1 / p n ( ω n + 1 ) = ω n . It is the aim of this article to establish a similar result for the ray class field K 𝔭 n of conductor 𝔭 n over an imaginary quadratic number field K where 𝔭 n is the power of a prime ideal in K . Therefore the exponential function has to be replaced by a suitable elliptic function....

Currently displaying 2061 – 2080 of 3028