Exponential sums for O¯(2n,q) and their applications
A sum of exponentials of the form , where the are distinct integers is called an idempotent trigonometric polynomial (because the convolution of with itself is ) or, simply, an idempotent. We show that for every and every set of the torus with there are idempotents concentrated on in the sense. More precisely, for each there is an explicitly calculated constant so that for each with and one can find an idempotent such that the ratio is greater than . This is in fact...
For positive integers m and N, we estimate the rational exponential sums with denominator m over the reductions modulo m of elements of the set ℱ(N) = {s/r : r,s ∈ ℤ, gcd(r,s) = 1, N ≥ r > s ≥ 1} of Farey fractions of order N (only fractions s/r with gcd(r,m) = 1 are considered).
Let . Suppose that are linearly independent over . For Diophantine exponents we prove
Let be a real number and let be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents and defined by Mahler and Koksma. We calculate their six values when and is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction by quadratic surds.
On montre que les exposants de Lyapunov de l’algorithme de Jacobi-Perron, en dimension quelconque, sont tous différents et que la somme des exposants extrêmes est strictement positive. En particulier, si , le deuxième exposant est strictement négatif.
Dans cet article nous présentons la théorie des équations différentielles -adiques et ses applications concernant le théorème de finitude de la cohomologie -adique d’une variété affine et le théorème de la monodromie -adique des représentations galoisiennes locales.
We prove the rationality of the Łojasiewicz exponent for p-adic semi-algebraic functions without compactness hypothesis. In the parametric case, we show that the parameter space can be divided into a finite number of semi-algebraic sets on each of which the Łojasiewicz exponent is constant.