Sur les nombres parfaits
Soit une partie discrète et multiplicativement libre de la demi-droite ouverte , et le semi-groupe unitaire engendré par . Les éléments de s’appellent nombres premiers généralisés et ceux de entiers généralisés. Les fonctions de décompte correspondantes sont désignées et ). Le problème de Beurling consiste à donner des conditions sur qui entrainent le “ théorème des nombres premiers ” . En posant , la condition de Beurling est avec , et il y a un contre-exemple avec . L’article...
Un théorème bien connu de Pólya montre que si est une fonction entière d’une variable complexe telle que appartienne à pour tout entier naturel , et de type exponentiel plus petit que , alors est un polynôme. De même Gel’fond a montré que si est un entier naturel plus grand que 1, si la croissance de est assez lente et si appartient à pour tout , alors est un polynôme.Dans cet article, nous étudions le même genre de question quand les suites et sont remplacées par différentes...
On considère dans cet article les pro--extensions maximales à ramification restreinte au-dessus de la -extension cyclotomique d’un corps de nombres. Leur groupe de Galois est étudié, d’abord à travers le rang de la partie -libre de leur abélianisé, puis par leurs nombres minimaux de générateurs et de relations. Pour cela, on utilise la théorie des corps de classes, et on reprend les éléments de l’étude par Koch des pro--extensions à ramification restreinte maximales, qui fonctionnent dans ce...