The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
694
On désigne par le nombre de partitions de l’entier en parts supérieures ou égales à . En partant de l’estimation asymptotique de exprimée à l’aide d’un paramètre défini implicitement en fonction de et , nous éliminons ce paramètre en utilisant la formule sommatoire d’Euler-Maclaurin, pour obtenir un développement asymptotique de valable pour , et , étant un réel quelconque.
On désigne par le nombre de partitions de l’entier en parts supérieures ou égales à , et le nombre de partitions de de plus petite part . Dans un précédent article (voir [9]) un développement asymptotique de est obtenu uniformément pour ; on complète ce développement uniformément pour . Afin de prolonger les résultats jusqu’à , on donne un encadrement de valable pour en utilisant la relation où désigne le nombre de partitions de en exactement parts. On donne aussi une...
Given a monic degree polynomial and a non-negative integer , we may form a new monic degree polynomial by raising each root of to the th power. We generalize a lemma of Dobrowolski to show that if and is prime then divides the resultant of and . We then consider the function . We show that for fixed and that this function is periodic in both and , and exhibits high levels of symmetry. Some discussion of its structure as a union of lattices is also given.
In this paper, we find all Pell and Pell-Lucas numbers written in the form , in nonnegative integers , , , with .
Currently displaying 121 –
140 of
694