Displaying 1481 – 1500 of 1526

Showing per page

Symboles des restes quadratiques des discriminants dans les extensions modérément ramifiées

A. Movahhedi, M. Zahidi (2000)

Acta Arithmetica

1. Introduction. Soit L un corps de nombres de degré n sur le corps ℚ des nombres rationnels de discriminant D = D L / . Si l’entier D n’est pas un carré, on note d le discriminant du corps quadratique ℚ(√D), sinon on pose d=1. Soit p un nombre premier non-ramifié dans L de sorte que le symbole des restes quadratiques (D/p) soit non-nul. Un théorème déjà ancien dû à A. Pellet ([3, page 245]), L. Stickelberger et G. Voronoï montre que la parité du nombre g d’idéaux premiers de L au-dessus de p est déterminée...

Symbolic discrepancy and self-similar dynamics

Boris Adamczewski (2004)

Annales de l'Institut Fourier

We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.

Symétries spectrales des fonctions zêtas

Frédéric Paugam (2009)

Journal de Théorie des Nombres de Bordeaux

On définit, en réponse à une question de Sarnak dans sa lettre a Bombieri [Sar01], un accouplement symplectique sur l’interprétation spectrale (due à Connes et Meyer) des zéros de la fonction zêta. Cet accouplement donne une formulation purement spectrale de la démonstration de l’équation fonctionnelle due à Tate, Weil et Iwasawa, qui, dans le cas d’une courbe sur un corps fini, correspond à la démonstration géométrique usuelle par utilisation de l’accouplement de dualité de Poincaré Frobenius-équivariant...

Symmetric identity for polynomial sequences satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x )

Farid Bencherif, Rachid Boumahdi, Tarek Garici (2021)

Communications in Mathematics

Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x ) with A 0 ( x ) a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.

Currently displaying 1481 – 1500 of 1526