The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Gauss–Manin connections for p -adic families of nearly overconvergent modular forms

Robert Harron, Liang Xiao (2014)

Annales de l’institut Fourier

We interpolate the Gauss–Manin connection in p -adic families of nearly overconvergent modular forms. This gives a family of Maass–Shimura type differential operators from the space of nearly overconvergent modular forms of type r to the space of nearly overconvergent modular forms of type r + 1 with p -adic weight shifted by 2 . Our construction is purely geometric, using Andreatta–Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus generalize to higher rank groups.

Geometric and p -adic Modular Forms of Half-Integral Weight

Nick Ramsey (2006)

Annales de l’institut Fourier

In this paper we introduce a geometric formalism for studying modular forms of half-integral weight. We then use this formalism to define p -adic modular forms of half-integral weight and to construct p -adic Hecke operators.

Currently displaying 1 – 4 of 4

Page 1