The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
200
Let be a zero of a polynomial of degree with odd coefficients, with not a root of unity. We show that the height of satisfiesMore generally, we obtain bounds when the coefficients are all congruent to modulo for some .
Let P be a unimodular polynomial of degree d-1. Then the height H(P²) of its square is at least √(d/2) and the product L(P²)H(P²), where L denotes the length of a polynomial, is at least d². We show that for any ε > 0 and any d ≥ d(ε) there exists a polynomial P with ±1 coefficients of degree d-1 such that H(P²) < (2+ε)√(dlogd) and L(P²)H(P²)< (16/3+ε)d²log d. A similar result is obtained for the series with ±1 coefficients. Let be the mth coefficient of the square f(x)² of a unimodular...
We prove formulas for the k-higher Mahler measure of a family of rational functions with an arbitrary number of variables. Our formulas reveal relations with multiple polylogarithms evaluated at certain roots of unity.
We present an algorithm for computing discriminants and prime ideal decomposition in number fields. The algorithm is a refinement of a -adic factorization method based on Newton polygons of higher order. The running-time and memory requirements of the algorithm appear to be very good.
We study the problem of constructing and enumerating, for any integers , number fields of degree whose ideal class groups have “large" -rank. Our technique relies fundamentally on Hilbert’s irreducibility theorem and results on integral points of bounded degree on curves.
Dans cet article, nous donnons une minoration de la mesure de Mahler d'un polynôme à coefficients entiers, dont toutes les racines sont d'une part réelles positives, d'autre part réelles, en fonction de la valeur de ce polynôme en zéro. Ces minorations améliorent des résultats antérieurs de A. Schinzel. Par ailleurs, nous en déduisons des inégalités de M.-J. Bertin, liant la mesure d'un nombre algébrique à sa norme.
1. Introduction. Let K be a field of characteristic p ≥ 0 and let f(X) be a polynomial of degree at least two with coefficients in K. We set f₁(X) = f(X) and define for all r ≥ 1. Following R. W. K. Odoni [7], we say that f is stable over K if is irreducible over K for every r ≥ 1. In [6] the same author proved that the polynomial f(X) = X² - X + 1 is stable over ℚ. He wrote in [7] that the proof given there is quite difficult and it would be of interest to have an elementary proof. In the sequel...
We consider a certain class of polynomials whose zeros are, all with one exception, close to the closed unit disk. We demonstrate that the Mahler measure can be employed to prove irreducibility of these polynomials over ℚ.
In this paper, we introduce certain Krein-space operators induced by free product algebras induced by both primes and directed graphs. We study operator-theoretic properties of such operators by computing free-probabilistic data containing number-theoretic data.
We prove that every cyclic cubic extension of the field of rational numbers contains algebraic numbers which are Mahler measures but not the Mahler measures of algebraic numbers lying in . This extends the result of Schinzel who proved the same statement for every real quadratic field . A corresponding conjecture is made for an arbitrary non-totally complex field and some numerical examples are given. We also show that every natural power of a Mahler measure is a Mahler measure.
In this paper, we study groupoid actions acting on arithmetic functions. In particular, we are interested in the cases where groupoids are generated by directed graphs. By defining an injective map α from the graph groupoid G of a directed graph G to the algebra A of all arithmetic functions, we establish a corresponding subalgebra AG = C*[α(G)]︀ of A. We construct a suitable representation of AG, determined both by G and by an arbitrarily fixed prime p. And then based on this representation, we...
Currently displaying 61 –
80 of
200