The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
461
It is well known that the continued fraction expansion of readily displays the midpoint of the principal cycle of ideals, that is, the point halfway to a solution of . Here we notice that, analogously, the point halfway to a solution of can be recognised. We explain what is going on.
This article provides necessary and sufficient conditions for
both of the Diophantine equations X^2 − DY^2 = m1 and x^2 − Dy^2 = m2
to have primitive solutions when m1 , m2 ∈ Z, and D ∈ N is not a perfect
square. This is given in terms of the ideal theory of the underlying real
quadratic order Z[√D].
Currently displaying 161 –
180 of
461