The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 37

Showing per page

The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields

Hourong Qin (1995)

Acta Arithmetica

1. Introduction. Let F be a number field and O F the ring of its integers. Many results are known about the group K O F , the tame kernel of F. In particular, many authors have investigated the 2-Sylow subgroup of K O F . As compared with real quadratic fields, the 2-Sylow subgroups of K O F for imaginary quadratic fields F are more difficult to deal with. The objective of this paper is to prove a few theorems on the structure of the 2-Sylow subgroups of K O F for imaginary quadratic fields F. In our Ph.D. thesis (see...

The distribution of second p -class groups on coclass graphs

Daniel C. Mayer (2013)

Journal de Théorie des Nombres de Bordeaux

General concepts and strategies are developed for identifying the isomorphism type of the second p -class group G = Gal ( F p 2 ( K ) | K ) , that is the Galois group of the second Hilbert p -class field F p 2 ( K ) , of a number field K , for a prime p . The isomorphism type determines the position of G on one of the coclass graphs 𝒢 ( p , r ) , r 0 , in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field K and of its p -class group Cl p ( K ) , the position of G is restricted to certain admissible branches of coclass...

Currently displaying 1 – 20 of 37

Page 1 Next