The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Galois co-descent for étale wild kernels and capitulation

Manfred Kolster, Abbas Movahhedi (2000)

Annales de l'institut Fourier

Let F be a number field with ring of integers o F . For a fixed prime number p and i 2 the étale wild kernels W K 2 i - 2 e ´ t ( F ) are defined as kernels of certain localization maps on the i -fold twist of the p -adic étale cohomology groups of spec o F [ 1 p ] . These groups are finite and coincide for i = 2 with the p -part of the classical wild kernel W K 2 ( F ) . They play a role similar to the p -part of the p -class group of F . For class groups, Galois co-descent in a cyclic extension L / F is described by the ambiguous class formula given by genus theory....

Currently displaying 1 – 2 of 2

Page 1