The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 11 of 11

Showing per page

Structure galoisienne des anneaux d'entiers d'extensions sauvagement ramifiées. I

Jacques Queyrut (1981)

Annales de l'institut Fourier

Soient N un corps de nombres, Z N son anneau d’entiers et Γ un groupe d’automorphismes de N . L’objet de cet article est l’étude de Z N en tant que Z [ Γ ] -module sans hypothèse de ramification modérée. On montre que la classe de Z N est triviale dans certains groupes de Grothendieck dépendant de l’ensemble S des nombres premiers sauvagement ramifiés dans N .

Sur la p -torsion de certains modules galoisiens

Thong Nguyen-Quang-Do (1986)

Annales de l'institut Fourier

Étant donné un corps de nombres K et un nombre premier p , soit 𝒯 K le sous-module de Z p -torsion du groupe de Galois de la p -extension abélienne p -ramifiée maximale de K . On se propose d’étudier la structure de module galoisien de 𝒯 K . Si K vérifie la conjecture de Leopoldt, 𝒯 K contient un sous-module formé des racines p -primaires de l’unité semi-locales quotientées par les racines p -primaires de l’unité globales, et le quotient de 𝒯 K par ce sous-module peut s’interpréter de deux façons : soit comme les...

Currently displaying 1 – 11 of 11

Page 1