The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 18 of 18

Showing per page

On elementary abelian 2-Sylow K₂ of rings of integers of certain quadratic number fields

P. E. Conner, J. Hurrelbrink (1995)

Acta Arithmetica

A large number of papers have contributed to determining the structure of the tame kernel K F of algebraic number fields F. Recently, for quadratic number fields F whose discriminants have at most three odd prime divisors, 4-rank formulas for K F have been made very explicit by Qin Hourong in terms of the indefinite quadratic form x² - 2y² (see [7], [8]). We have made a successful effort, for quadratic number fields F = ℚ (√(±p₁p₂)), to characterize in terms of positive definite binary quadratic forms,...

On non-commutative twisting in étale and motivic cohomology

Jens Hornbostel, Guido Kings (2006)

Annales de l’institut Fourier

This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups H 1 ( 𝒪 K [ 1 / S ] , H i ( X ¯ , p ( j ) ) ) , where X Spec 𝒪 K [ 1 / S ] is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to H i ( X ¯ , p ( j ) ) . Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.

On the 2-primary part of K₂ of rings of integers in certain quadratic number fields

A. Vazzana (1997)

Acta Arithmetica

1. Introduction. For quadratic fields whose discriminant has few prime divisors, there are explicit formulas for the 4-rank of K E . For quadratic fields whose discriminant has arbitrarily many prime divisors, the formulas are less explicit. In this paper we will study fields of the form ( ( p . . . p k ) ) , where the primes p i are all congruent to 1 mod 8. We will prove a theorem conjectured by Conner and Hurrelbrink which examines under what conditions the 4-rank of K E is zero for such fields. In the course of proving...

On the cyclotomic elements in K₂ of a rational function field

Kejian Xu, Chaochao Sun, Shanjie Chi (2014)

Acta Arithmetica

If l is a prime number, the cyclotomic elements in the l-torsion of K₂(k(x)), where k(x) is the rational function field over k, are investigated. As a consequence, a conjecture of Browkin is partially confirmed.

Currently displaying 1 – 18 of 18

Page 1