Displaying 541 – 560 of 2019

Showing per page

Extension of the Two-Variable Pierce-Birkhoff conjecture to generalized polynomials

Charles N. Delzell (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Let h : n be a continuous, piecewise-polynomial function. The Pierce-Birkhoff conjecture (1956) is that any such h is representable in the form sup i inf j f i j , for some finite collection of polynomials f i j [ x 1 , ... , x n ] . (A simple example is h ( x 1 ) = | x 1 | = sup { x 1 , - x 1 } .) In 1984, L. Mahé and, independently, G. Efroymson, proved this for n 2 ; it remains open for n 3 . In this paper we prove an analogous result for “generalized polynomials” (also known as signomials), i.e., where the exponents are allowed to be arbitrary real numbers, and not just natural numbers;...

Extensions de valuation et polygone de Newton

Michel Vaquié (2008)

Annales de l’institut Fourier

Soient ( K , ν ) un corps valué et L est une extension monogène finie de K définie par L = K [ x ] / ( P ) , alors toute valuation de L qui prolonge ν définit une pseudo-valuation ζ de K [ x ] de noyau l’idéal ( P ) . Nous savons associer à ζ une famille de valuations de K [ x ] , appelée famille admissible, construite de façon explicite à partir de valuations augmentées et de valuations augmentées limites.Nous donnons une condition nécessaire et suffisante pour qu’une valuation μ de K [ x ] appartienne à la famille admissible associée à une pseudo-valuation...

Extensions of Büchi's problem: Questions of decidability for addition and kth powers

Thanases Pheidas, Xavier Vidaux (2005)

Fundamenta Mathematicae

We generalize a question of Büchi: Let R be an integral domain, C a subring and k ≥ 2 an integer. Is there an algorithm to decide the solvability in R of any given system of polynomial equations, each of which is linear in the kth powers of the unknowns, with coefficients in C? We state a number-theoretical problem, depending on k, a positive answer to which would imply a negative answer to the question for R = C = ℤ. We reduce a negative answer for k = 2 and for...

Extensions of the Bloch–Pólya theorem on the number of real zeros of polynomials

Tamás Erdélyi (2008)

Journal de Théorie des Nombres de Bordeaux

We prove that there are absolute constants c 1 > 0 and c 2 > 0 such that for every { a 0 , a 1 , ... , a n } [ 1 , M ] , 1 M exp ( c 1 n 1 / 4 ) , there are b 0 , b 1 , ... , b n { - 1 , 0 , 1 } such that P ( z ) = j = 0 n b j a j z j has at least c 2 n 1 / 4 distinct sign changes in ( 0 , 1 ) . This improves and extends earlier results of Bloch and Pólya.

Extensions purement inséparables d'exposant non borné

Mustapha Chellali, El Hasane Fliouet (2004)

Archivum Mathematicum

Dans [Swe], Sweedler a caractérisé les extensions purement inséparables K / k d’exposant fini qui sont produit tensoriel d’extensions simples. En vue d’étendre ce résultat aux extensions d’exposants non bornés, L. Kime dans [Kim] propose les extensions k ( x p - ) = k ( x p - 1 , x p - 2 , ) comme généralisation d’extensions simples. Dans ce travail, on propose d’autres généralisations naturelles. Ceci nous a permis de décrire explicitement toutes les extensions purement inséparables K / k lorsque le degré d’imperfection de k est 2 . Dans [Dev2]...

Factorisation d'opérateurs différentiels à coefficients dans une extension liouvillienne d'un corps valué

Magali Bouffet (2002)

Annales de l’institut Fourier

On démontre ici un lemme de Hensel pour les opérateurs différentiels. On en déduit un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension liouvillienne transcendante d’un corps valué. On obtient en particulier un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension de ( ( z ) ) par un nombre fini d’exponentielles et de logarithmes algébriquement indépendants sur ( ( z ) ) .

Currently displaying 541 – 560 of 2019