Displaying 681 – 700 of 2019

Showing per page

Groupe de Galois différentiel local et représentation adjointe

Elie Compoint, Anne Duval (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article on s’intéresse à la représentation adjointe du tore exponentiel sur l’algèbre de Lie du groupe de Galois différentiel local. Nous proposons un algorithme pour réduire les sous-espaces poids de dimension supérieure à 1 à des sous-espaces de racines. Ce faisant, on construit un tore (en général) maximal qui contient le tore exponentiel. Au cours de ce travail on est amené à étudier la régularité du tore exponentiel dans le groupe de Galois local.

Groupes de Galois de corps de type fini

Tamás Szamuely (2002/2003)

Séminaire Bourbaki

Il y a quelques années, Florian Pop a démontré que tout corps de type fini sur le corps premier est déterminé à isomorphisme près par son groupe de Galois absolu (quitte à passer à une extension purement inséparable en caractéristique positive). Ce théorème, dont la généalogie remonte à des travaux de Neukirch sur les groupes de Galois de corps de nombres au début des années 1970, répond positivement à la “conjecture anabélienne birationnelle”de A. Grothendieck formulée en 1983. Dans un travail...

Groupes totaux

Bruno Deschamps, Ivan Suarez Atias (2013)

Annales mathématiques Blaise Pascal

Les « groupes totaux » sont les groupes pour lesquels la dimension du centre l’algèbre des invariants d’une algèbre simple centrale 𝔄 f associée à un 2 -cocycle f Z 2 ( Gal ( L / k ) , L * ) sous l’action d’un relevé de l’action galoisienne à 𝔄 f est constante quels que soient k et f . Dans cet article, nous montrons que les groupes quasi-CC (qui sont les groupes de centre cyclique et dont les centralisateurs des éléments hors du centre sont cycliques) sont totaux. Les groupes de type CC qui sont les groupes quasi-CC à centre trivial...

Groups of Order 32 as Galois Groups

Michailov, Ivo (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 12F12.We find the obstructions to realizability of groups of order 32 as Galois groups over arbitrary field of characteristic not 2. We discuss explicit extensions and automatic realizations as well.This work is partially supported by project of Shumen University

Hardy fields in several variables

Leonardo Pasini (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro si estende il concetto di campo di Hardy [Bou], al contesto dei germi di funzioni in più variabili che sono definite su insiemi semi-algebrici [Br.], [D.] e che risultano essere morfismi di categorie lisce [Pal.]. In tale contesto si dimostra che per ogni campo di Hardy di germi di una fissata categoria liscia 𝒞 , la sua chiusura algebrica relativa nell'anello G 𝒞 , di tutti i germi nella stessa categoria liscia, è un campo di Hardy reale chiuso, che è l'unica chiusura reale del campo...

Heckesche Systeme idealer Zahlen und Knesersche Körpererweiterungen

Toma Albu, Florin Nicolae (1995)

Acta Arithmetica

Einleitung. Eine klassische Konstruktion aus der algebraischen Zahlentheorie ist folgende: Zu jedem algebraischen Zahlkörper K kann man ein sogenanntes System idealer Zahlen S zuordnen, welches eine Untergruppe der multiplikativen Gruppe ℂ* der komplexen Zahlen ist derart, daß die Faktorgruppe S/K* in kanonischer Weise isomorph zu der Klassengruppe C l K von K ist. Diese Konstruktion geht auf Hecke [5] zurück und hat folgende wichtige Eigenschaft, die auch bei dem Hilbertschen Klassenkörper zu K vorkommt:...

Henselian Discrete Valued Fields Admitting One-Dimensional Local Class Field Theory

Chipchakov, I. (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 11S31 12E15 12F10 12J20.This paper gives a characterization of Henselian discrete valued fields whose finite abelian extensions are uniquely determined by their norm groups and related essentially in the same way as in the classical local class field theory. It determines the structure of the Brauer groups and character groups of Henselian discrete valued strictly primary quasilocal (or PQL-) fields, and thereby, describes the forms of the local reciprocity...

Currently displaying 681 – 700 of 2019