Inégalités de Cauchy et théorème d'unicité
Dans cet article, nous donnons une minoration de la mesure de Mahler d'un polynôme à coefficients entiers, dont toutes les racines sont d'une part réelles positives, d'autre part réelles, en fonction de la valeur de ce polynôme en zéro. Ces minorations améliorent des résultats antérieurs de A. Schinzel. Par ailleurs, nous en déduisons des inégalités de M.-J. Bertin, liant la mesure d'un nombre algébrique à sa norme.
On considère le problème de déterminer les solutions d’une équation différentielle ordinaire, dite de Risch sur une courbe algébrique. En fait une généralisation assez évidente de la méthode de Risch suffit mais elle nous permet de généraliser son algorithme d’intégration à toute extension élémentairement transcendante d’une extension algébrique des fonctions rationnelles.