Displaying 1421 – 1440 of 2019

Showing per page

Répartition modulo 1 dans un corps de séries formelles sur un corps fini

Mireille Car (1995)

Acta Arithmetica

Introduction. Soit q une puissance d’un nombre premier p et soit q le corps fini à q éléments. Une certaine analogie entre l’arithmétique de l’anneau ℤ des entiers rationnels et celle de l’anneau q [ T ] a conduit à étendre à q [ T ] de nombreuses questions de l’arithmétique classique. L’équirépartition modulo 1 est une de ces questions. Le corps des nombres réels est alors remplacé par le corps q ( ( T - 1 ) ) des séries de Laurent formelles, complété du corps q ( T ) des fractions rationnelles pour la valuation à l’infini et...

Représentations de de Rham et normes universelles

Laurent Berger (2005)

Bulletin de la Société Mathématique de France

On calcule le module des normes universelles pour une représentation p -adique de de Rham. Le calcul utilise la théorie des ( ϕ , Γ ) -modules (la formule de réciprocité de Cherbonnier-Colmez) et l’équation différentielle associée à une représentation de de Rham.

Représentations galoisiennes et opérateurs de Bessel p -adiques

Yves André (2002)

Annales de l’institut Fourier

Nous traitons des liens entre équations différentielles p -adiques et représentations p -adiques de corps locaux de caractéristique p , en nous concentrant sur le cas Bessel. Nous démontrons que toute équation de Bessel p -adique normalisée à la Dwork, sur une fine couronne au bord du disque à l’infini, se trivialise sur un certain revêtement étale de cette couronne (revêtement provenant d’une extension finie séparable de 𝔽 p ( ( 1 / x ) ) ). Le cas difficile est p = 2 , et nous explicitons complètement le revêtement et...

Representations of multivariate polynomials by sums of univariate polynomials in linear forms

A. Białynicki-Birula, A. Schinzel (2008)

Colloquium Mathematicae

The paper is concentrated on two issues: presentation of a multivariate polynomial over a field K, not necessarily algebraically closed, as a sum of univariate polynomials in linear forms defined over K, and presentation of a form, in particular a zero form, as the sum of powers of linear forms projectively distinct defined over an algebraically closed field. An upper bound on the number of summands in presentations of all (not only generic) polynomials and forms of a given number of variables and...

Residue class rings of real-analytic and entire functions

Marek Golasiński, Melvin Henriksen (2006)

Colloquium Mathematicae

Let 𝓐(ℝ) and 𝓔(ℝ) denote respectively the ring of analytic and real entire functions in one variable. It is shown that if 𝔪 is a maximal ideal of 𝓐(ℝ), then 𝓐(ℝ)/𝔪 is isomorphic either to the reals or a real closed field that is an η₁-set, while if 𝔪 is a maximal ideal of 𝓔(ℝ), then 𝓔(ℝ)/𝔪 is isomorphic to one of the latter two fields or to the field of complex numbers. Moreover, we study the residue class rings of prime ideals of these rings and their Krull dimensions. Use is made of...

Currently displaying 1421 – 1440 of 2019